PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Burean

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6.

(11) International Publication Number:

WO 95/10910

(30) Priority Data:

08/134,025 us

12 October 1993 (12.10.93)

(71) Applicant: INTEL CORPORATION [US/US]; 2200 Mission
College Boulevard, P.0. Box 58119, Santa Clara, CA
95052-8110 (US).

(72) Inventors: SAMPAT, Ketan; 8865 SW White Pine Lane, Port-
land, OR 97225 (US). ACOTT, Troy; 16604 SW Tim-
berland Drive, Beaverton, OR 97007 (US). DANNEELS,
Gunner; 4840 SW 166th Drive, Beaverton, OR 97007
(US). SIVAKUMAR, Ramamurthy; 3770 NW 166th Drive,
Beaverton, OR 97006-5212 (US). SPOONER, Galen; 4970
SW Menlo Drive, Beaverton, OR 97005 (US).

(74) Agent: MURRAY, William, H; 1600 Market Street, Suite
3600, Philadelphia, PA 19103 (US).

HO04L 29/06 A2
9 (43) International Publication Date: 20 April 1995 (20.04.95)
(21) International Application Number: PCT/US94/11277 | (81) Designated States: CA, JP, VN, European patent (AT, BE,
CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,
(22) International Filing Date: 6 October 1994 (06.10.94) SE).
Published

Without international search report and to be republished
upon receipt of that report.

(54) Title: SERVER/CLIENT ARCHITECTURE AND METHOD FOR MULTICASTING ON A COMPUTER NETWORK

SERVER SOFTWARE ARCHITECTURE

(57) Abstract

1512
1602 \l SZRYER APPLICATION ‘J TO ANG FROM
MASS STORAGE
I DEVICE 1516
1624 1 604'\ WEDIA SERVICES MAMAGER APPLICATION PROGRAMMING INTERFACE 1626
(o AP1Y FILE 170 f
1608 I ORIVER
MEDIA k‘
SYNC MEDIA SERVICES MANAGER (MSK)
et | _I 1628
.f! REAL-TIME WEDIA SERVICES APPLICATION PROGRAMMING INTERFACE (RMS mi l "E}‘/:m
R s S I RN N
VIDEO vIoEQ ApI0 010 TExT TEXT l
SOURCE SINK SOURCE SIN SOWRCE ST 0
usep P wP [>4 wsP (4 NETWORK
161 zf i INTERFACE
G Y4 IS R B T
1614 1616 1618 1620 1622
FROM o FROM. &) FROM 0
YIGEQ DISPLAY A1 AWI0 TIT DISPLAY
<00EC DRIVER MRIVER CRIVER SOURCE DRIVER
1506 1510

A server/client for a network-based multicast system has a media services manager and one or more media service providers. When
functioning as a server, the media service providers receive data corresponding to a channel having one or more related data streams, where
each media service provider receives data corresponding to a data stream of the channel. In the server, the media services manager receives
the data from the media service providers and transmits the data to the network. When functioning as a client, the media services manager
receives data from the network fora selected channel having one or more related data streams. In the client, the media service providers
receive and play the data from the media services manager, where each media service provider receives and plays data corresponding to a
data stream of the chanrel. In a preferred embodiment, a channel has logically related audio, video, and/or text data streams.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

applications under the PCT.

AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CcG Congo

CH " Switzerland

CI Céte d’Ivoire
CM Cameroon

CN China

cs Czechoslovakia
CcZ Czech Republic
DE Germany

DK Denmark
ES Spain
FI Finland
FR France
GA Gabon

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea
Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania

Malawi

Niger

Netherlands

Norway

New Zealand -
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan

Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

WO 95/10910 : PCT/US94/11277

SERVER/CLIENT ARCHITECTURE AND METHOD FOR
MULTICASTING ON A COMPUTER NETWORK

BACKGROUND OF THE INVENTION

Field of the Invention

The present invention relates to multicasting, and, in particular, to methods and

systems for multicasting multiple related data streams on a computer network.

Description of the Related Art

In multicasting, one or more sources transmit a plurality of data signals for potential
receipt by one or more receivers in a network. Only one copy of each data signal is transmitted.
Each receiver selects which if any of the plurality of signals to receive and process.

Multicasting differs from point-to-point communication, multipoint communication
without multicasting, and broadcasting. In point-to-point communication, one copy of data is
selectively transmitted from one source to one receiver. In multipoint communication without
multicasting, data is copied multiple times, one copy of which is transmitted to each of a set of
multiple receivers. In broadcasting, each data signal is transmitted to every receiver in the network
without giving the receiver the ability to select only a subset of those transmitted signals to be
received.

It is desirable to provide multicasting on a computer network. It is particularly
desirable to provide a system for transmitting audio, video, and text data streams for selective receipt
by one or more client computers of a computer network. For example, a user would be able to select
a television channel comprising audio and video signals for play on the client computer. The user
would also preferably be able to control certain aspects of the play of the selected signal. For
example, the user would be able to control the volume of the audio component and the size of the
display of the video component. Moreover, the user would be able to select a subset of the
components of a selected channel for play (e.g., playing only the audio component of a television
channel).

It is also desirable that the multicast system support data streams that are received
from an -external source (e.g., via air transmission or cable) or from a local source (e.g., a VCR).
When the client computer provides.a windowed environment (such as that provided by Microsoft
Windows), the multicast system preferably allows a user to work in one window while the selected

video and/or text are displayed in one or more other windows.

-1-

WO 95/10910 PCT/US94/11277

The Internet MBONE multicast backbone system is a semi-permanent multicast
testbed. MBONE is a virtual network. It is layered on top of portions of the physical Internet to
support routing of multicast packets since that function is not integrated into many production routers.
The network is composed of islands that can directly support multicast, such as multicast local area
networks (LANSs) like Ethernet, linked by point-to-point links called "tunnels". The tunnel endpoints
are typically workstation-class machines having operating system support for multicast and running the
multicast routing daemon.

However, the MBONE system does not provide high-quality multicasting. Audio
signals are subject to unacceptable delays that result in non-real-time play at the client computers. In
addition, audio and video signals are not related. As a result, the play of audio signals is not
synchronized with the play of video signals. The multicasting is therefore of low quality. Moreover,
MBONE does not allow the user to select components and control aspects of the selected signal.
Furthermore, MBONE does not support the play of a selected signal in a windowed environment.

It is accordingly an object of this invention to overcome the disadvantages and
drawbacks of the known art and to provide methods and apparatuses for multicasting multiple signals
on a computer network.

It is a further object of the present invention to provide high-quality multicasting of
audio, video, and text data streams on a computer network.

It is a further object of the present invention to provide multicasting on a computer
network wherein a user may select components of a selected channel for play.

It is a further object of the present invention to provide multicasting on a computer
network wherein a user may control certain aspects of the play of a selected channel.

It is a further object of the present invention to provide multicasting on a computer
network having client computers that operate in a windowed environment.

Further objects and advantages of this invention will become apparent from the

detailed description of a preferred embodiment which follows.

<

WO 95/10910 PCT/US94/11277

SUMMARY OF THE INVENTION

According to a preferred embodiment, the present invention is a client for a network- -
based multicast system. The client comprises a media services manager and one or more media
service providers. The media services manager receives data from the network for a selected channel,
where the channel comprises one or more related data streams. The one or more media service
providers receive and play the data from the media services manager, where each media service
provider receives and plays data corresponding to a data stream of the channel.

According to an alternative preferred embodiment, the present invention is a server for
a network-based multicast system. The server comprises a media services manager and one or more
media service providers. The one or more media service providers receive data corresponding to a
channel, where the channel comprises one or more related data streams. Each media service provider
receives data corresponding to a data stream of the channel. The media services manager receives the

data from the media service providers and transmits the data to the network.

BRIEF DESCRIPTION OF THE DRAWINGS

Other objects, features, and advantages of the present invention will become more
fully apparent from the following detailed description of the preferred embodiment, the appended
claims, and the accompanying drawings in which:

Fig. 1 is a representation of a multicast system for multicasting multiple, related data
streams on a computer network, according to a preferred embodiment of the present invention;

Fig. 2 shows a preferred embodiment of the user interface as displayed on the monitor
of a client of the multicast system of Fig. 1;

Fig. 3 shows an example of a preferred embodiment of the Program Guide window
displayed when the user selects the Guide option in the channel controls of the user interface of Fig.
2;

Fig. 4 shows a preferred embodiment of the Password window created when the user
selects a channel that requires the entry of a password;

Fig. 5 shows a preferred embodiment of the Pay-Per-View window created when the
user selects a channel that requires payment;

Figs. 6, 7, and 8 show preferred embodiments of the user interface of Fig. 2 for
selected channels consisting of only video, only audio, and only text, respectively;

Fig. 9 shows a preferred embodiment of the Options menu created when the user
selects the Options option in the channel controls of the user interface of Fig. 2;

Figs. 10, 11, and 12 show preferred embodiments of the user interface of Fig. 2 when

video and text, video only, and text only, respectively, are selected for display with controls hidden;

WO 95/10910 ' PCT/US94/11277

Fig. 13 shows a preferred embodiment of the remote control window that is created
when the Remote Control item of the Options menu of the user interface of Fig. 2 is selected;

Fig. 14 shows a preferred embodiment of the configure window that is created when
the Configure... item of the Options menu of the user interface of Fig. 2 is selected;

Fig. 15 is a block diagram of the server subsystem of the multicast system of Fig. 1;

Fig. 16 is a block diagram of the software architecture of the server subsystem of Fig.

15;

Fig. 17 is a block diagram of the client subsystem of the multicast system of Fig. 1;

Fig. 18 is a block diagram of the software architecture of the client suBsystem of Fig.
17,

Fig. 19 is a representation of the flow of data through the server software architecture
of Fig. 16;

Fig. 20 is a representation of the flow of data through the client software architecture
of Fig. 18;

Fig. 21 is a block diagram of the software architecture of the network input/output
(1/0) driver of the server software architecture of Fig. 16 and the client software architecture of Fig.
18;

Fig. 22 is a block diagram of the data link manager of the network 1/O driver of Fig.
21;

Fig. 23 is a block diagram of the media dependent module of the network I/O driver
of Fig. 21;

Fig. 24 is a representation of the data flow through each server and client of the
multicast system of Fig. 1;

Figs. 25, 26, and 27 are representations of Level 1 audio, video, and text data packets,
respectively, of the multicast system of Fig. 1;

Fig. 28 is a representation of a Level 3 data packet of the multicast system of Fig. 1;

Fig. 29 is a representation of the 24-byte DLM header of the Level 3 data packet of
Fig. 28;

Fig. 30 is a representation of a Level 5 data packet of the multicast system of Fig. 1;

Fig. 31 is a block diagram of the software architecture of each of the server and
clients of the multicast system of Fig. 1 for loading and unloading of service libraries; and

Fig. 32 is a diagram of the timing of function calls when a user opens/closes one
module, which in turn opens/closes another module, under the traditional method of using straight

calls to the Windows LoadLibrary and FreeLibrary functions.

-4-

WO 95/10910 - PCT/US94/11277

DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Referring to Fig. 1, there is a representation of multicast system 100 for rﬁulticasting
multiple, related data streams on a computer network, according to a preferred embodiment of the
present invention. Multicast system 100 comprises a single server 102 and multiple clients 104 linked
by network 106. Server 102 captures and posts data on network channels, with any number of clients
104 independently selecting channels for receipt and play.

Server 102 is capable of capturing analog audio and video signals from three different
sources: (1) signals generated locally by camera 108, (2) signals received by antenna 110 from a
remote source, and (3) recorded signals from VCR 112. In addition, server 102 may receive digital
text signal from a remote source (not shown) (e.g., via modem). Server 102 may receive multiple
signals of each type (i.e., audio, video, or text) from one or more sources at the same time.

For example, server 102 may receive via antenna 110 a first television program
consisting of three signals: video, English language audio, and Spanish language audio. At the same
time, server 102 may receive a second television program consisting of video and English language
audio from VCR 112. Server 102 may also concurrently receive the audio signal for a radio station
via antenna 110 and a text stream via modem.

Server 102 digitizes the received analog audio and video signals to generate digital
audio and video data streams. Server 102 selectively relates the digital audio, video, and text data
streams together to form specified channels. A channel is a logical representation of a specific
collection of data streams transmitted over the network. For example, the video and English audio
data streams of the first television program may be related together to form a first channel. That same
video data stream may be related to the Spanish audio data stream to form a second channel. In
addition, the video and English audio data streams of the second television program and the text data
stream may be related to form a third channel. The audio data stream for the radio station may
constitute a fourth channel by itself.

Server 102 fragments each data stream into network data packets for transmission over
network 106. Server 102 transmits a single copy of each of the network data packets for all four
channels over network 106 for potential receipt by clients 104. Each client 104 independently and
optionally selects any one of the four channels. When a client 104 selects a channel, the client may
receive and process the network data packets corresponding to the data streams of the selected
channel. Thus, system 100 is a multicasting system that provides multicasting of one or more
channels from server 102 to one or more clients 104. A preferred embodiment of a user interface for
multicast system 100 as well as the options provided to a user via that interface are described in
further detail later in this specification in conjunction with Fig. 2.

Server 102 and clients 104 may be any suitable computers and are preferably personal

computers having an Intel® i486-based central processing unit (CPU) running Microsoft Windows.

-5-

WO 95/10910 PCT/US94/11277

Server 102 and clients 104 are preferably sound enabled with a SoundBlaster Pro from Creative Labs,
network enabled with an Intel® Ether Express 16 card, and video enabled with Intel® SmartVideo®
Recorders (ISVR). Network 106 is preferably an Ethernet network.

User Interface

Referring now to Fig. 2, there is shown a preferred embodiment of the user interface
200 that is displayed on the monitor of a client 104 of the multicast system 100 of Fig. 1. In a
preferred embodiment, client 104 operates in a windowed environment, such as that provided by
Microsoft Windows. User interface 200 is a window frame comprising window controls 202, channel
controls 204, video display 206, audio controls 208, and text reader bar 210.

The video component (if any) of a selected channel is displayed in video display 206
and the text component (if any) of the selected channel is displayed in text reader bar 210. Preferably
using a computer mouse, a user may use audio controls 208 to control the play of the audio
component (if any) of the selected channel. Controlling the audio play includes increasing or
decreasing the volume or muting the sound completely. Audio controls 208 also displays a volume
meter for depicting the current volume level.

Those skilled in the art will understand that a user may use window controls 202 to
close (i.e., terminate the display of) user interface 200 and to control the size and position of user
interface 200. User interface 200 may be moved around the display raster by dragging either window
controls 202, video display 206, or text reader bar 210 using the mouse. Channel controls 204
provides the user with the ability to select a channel and to control certain aspects of the play of the
selected channel.

Multicast system 100 supports three types of data streams (audio, video, and text). A
channel may comprise any combination of data streams. The user is able to select how to configure
the play of a selected channel (e.g., play only the audio component of a channel having both audio
and video components). Moreover, the user may change the selected channel configuration and
various aspects of the channel (e.g., size of video display 206 or volume of audio play) at any time.
Certain channels may be marked as password protected and/or as pay-per-view. In those cases, the
user would have to enter the correct password and/or a valid credit card number depending upon the

nature of the channel.

Program Guide of the User Interface

Referring now to Fig. 3, there is shown an example of a preferred embodiment of the
Program Guide window 300 created when the user selects the Guide option in channel controls 204 of
user interface 200 of Fig. 2. Program Guide window 300 comprises a list 302 of the channels

currently being transmitted over the computer network and a list 304 of the channels to be transmitted

-6-

WO 95/10910 PCT/US94/11277

over the computer network in the future. Program Guide window 300 also preferably displays the
current time in clock 306.

Each entry in lists 302 and 304 of Program Guide window 300 identifies the date, start
time, and name (e.g., television channel name or program name) of the transmission. The entry also
provides (in brackets) information about the components of the channel, where the letters A, V, and T
indicate that the channel has audio, video, and text components, respectively.

The letter P indicates that the user must enter a special password in order to play the
selected channel. Referring to Fig. 4, there is shown a preferred embodiment of the Password window
created when the user selects a channel that requires the entry of a password. The user uses the
Password window to enter the special password for the program.

The symbol $ indicates that the user must pay in order to play the selected channel.
Referring to Fig. 5, there is shown a préferred embodiment of the Pay-Per-View window created when
the user selects a channel that requires payment. The user uses the Pay-Per-View window to enter a
credit card number to which to charge the payment for the program.

After the user selects a desired channel, the Program Guide window 300 is closed and
user interface 200 is configured in accordance with the components of the selected channel. For
example, referring now to Figs. 6, 7, and 8, there are shown preferred embodiments of the user

interface 200 for selected channels consisting of only video, only audio, and only text, respectively.

Options Menu of the User Interface

Referring now to Fig. 9, there is shown a preferred embodiment of the Options menu
900 created when the user selects the Options option in channel controls 204 of user interface 200 of
Fig. 2. Options menu 900 provides controls for the user to customize the component configuration
and other aspects of the window.

When selected, the Pause Services item of Options menu 900 pauses reception of all
currently active data streams all the way down to the network level. When implemented in the
preferred windowed environment, multicast system 100 allows a client 104 to play a selected channel
in one window, while the client 104 concurrently works in another window. Pause Services allows a
user to suspend the multicasting functions performed by client 104 in order to accelerate a network,
disk, or CPU intensive job also being handled by client 104.

When Pause Services is selected, many of the channel and audio controls are
preferably disabled, although the user may change the position of the user interface and perform other
window-related operations. The Pause Service menu item toggles the application back and forth
between paused and unpaused states. A check mark is preferably displayed next to the menu item to

indicate that service is paused.

-7-

WO 95/10910 PCT/US94/11277

The user may shrink or enlarge video display 206 of user interface 200 by selecting
and dragging a corner or side of video display 206 with the mouse. When selected, the Default
Window Size item of Options menu 900 returns user interface 200 to its specified default window size
as dictated by the default size for video display 206 (preferably 160 pixels wide by 120 pixels high).
The maximum size of video display 206 is preferably 320 pixels wide by 240 pixels high and the
minimum size is preferably 120 pixels wide by 90 pixels high. The aspect ratio of video display 206
is preferably always preserved.

When selected, the Hide Controls item of Options menu 900 hides (i.e., terminates the
display of) window controls 202, channel controls 204, and audio controls 208 of user interface 200.
The controls are redisplayed by double clicking on either video display 206 or text reader bar 210. As
such, the Hide Controls menu item is only enabled when at least one of video display 206 and text
reader bar 210 is displayed. Referring now to Figs. 10, 11, and 12, there are shown preferred
embodiments of the user interface 200 when video and text, video only, and text only, respectively,
are selected for display with controls hidden.

The Always On Top item of Options menu 900 toggles the application to and from
being TopMost in the Microsoft Windows Z-Order. When a window is TopMost, it always remains in
view on top of all other open windows. The user may select Always On Top when the user does not
want the multicasting application to be buried by other windows. A check mark is displayed next to
the menu item when the Always On Top item is selected.

The Video Window item of Options menu 900 is used to display or hide video display
206 of user interface 200. For example, the user may choose to play only the audio component of a
selected channel having both video and audio components. A check mark is displayed next to the
Video Window menu item when video display 206 is visible.

The Audio Controls item of Options menu 900 is used to display or hide audio
controls 208 of user interface 200. Audio controls 208 preferably cannot be hidden when neither
video display 206 nor text reader bar 210 is visible, since nothing would be visible other than the
window frame. As depicted in Fig. 7, audio controls 208 preferably has a fixed height, but may be
sized from a minimum width of 120 pixels to a maximum width of 320 pixels. A check mark is
displayed next to the Audio Controls menu item when audio controls 208 is visible.

The Reader Board item of Options menu 900 is used to display or hide text reader bar
210 of user interface 200. For example, the user may choose play only the audio and video
components of a selected channel having audio, video, and text components. A check mark is
displayed next to the Reader Board menu item when text reader bar 210 is visible.

Referring now to Fig. 13, there is shown a preferred embodiment of the remote control
window 1300 that is created when the Remote Control item of Options menu 900 is selected. Remote

" control window 1300 is a dialog window that providés functions analogous to those of a standard

-8-

WO 95/10910 PCT/US94/11277

television remote control. Remote control window functions include changing channels; changing
audio volume; and playing, recording, or rewinding the audio, video, or text components of the current
channel. The Remote Control menu item is preferably disabled when a remote control window 1300
is open to prevent multiple instances of remote control windows for the same channel at the same
time.

Referring now to Fig. 14, there is shown a preferred embodiment of the configure
window 1400 that is created when the Configure... item of Options menu 900 is selected. Configure
window 1400 is a dialog window that provides specific video controls such as saturation level,
brightness, contrast, and tint. In an alternative preferred embodiment, configure window 1400 also
provides specific audio controls such as mix and quality settings and specific text controls such as
scroll speed and freeze scroll. The Configure... menu item is preferably disabled when a configure

window 1400 is open to prevent multiple instances of configure windows for the same channel at the

same time.

Server Subsystem

Referring now to Fig. 15, there is shown a block diagram of server 102 of multicast
subsystem 100 of Fig. 1, according to a preferred embodiment of the present invention. Server 102
receives analog audio and video signals and digital text signals and transmits digital data packets
corresponding to those signals over the network for receipt by clients 104. |

In particular, tuner 1502 of server subsystem 102 receives, demodulates, and splits one
or more analog television feed signals into their constituent analog audio and video signals. Video
capture component 1504 captures and converts the analog video signals into digital video data streams.
Similarly, audio capture component 1508 captures and converts the analog audio signals into digital
audio data streams. Those skilled in the art will understand that the source of the analog audio and
video signals may vary depending on the particular embodiment of the present invention. Possible
sources of analog signals include cable television, radio or television air-wave signals, video cameras,
and VCRs. It will also be understood that, in alternative preferred embodiments, server 102 may
receive, capture, and convert analog text signals into digital text streams.

Video codec 1506 compresses the digital video data streams and transmits the
compressed video data streams to server software architecture 1512. Audio driver 1510 places the
audio data into buffers and transmits the audio data buffers to server software architecture 1512.
Server software architecture 1512 receives the audio, video, and text data streams, relates selected data
streams together to form channels, fragments each data stream into network data packets, and transmits

the network data packets to network interface 1514 for transmission over the network.

S

WO 95/10910 PCT/US94/11277

Server 102 also supports the recording of data to mass storage device 1516 with or
without concurrent multicasting of the data to the network. In addition, server 102 supports
multicasting of recorded data previously stored in mass storage device 1516.

Tuner 1502 may be any suitable device for demodulating and splitting analog
television feed signals and is preferably a VCR. Video capture component 1504 and codec 1506 may
be any suitable hardware/software device or devices for capturing and compressing video and are
preferably components of an Intel® SmartVideo® Recorder (ISVR). Audio capture component 1508
may be any suitable device for capturing and digitizing analog audio signals and is preferably a
Creative Labs SoundBlaster Pro.

Audio driver 1510 may be any suitable hardware/software device for processing audio
data and is preferably a Microsoft Wave Driver (i.e., a Microsoft Windows Audio Device Driver
corresponding to the Microsoft .WAV Specification). Server software architecture 1512 is
implemented on any suitable computer such as a personal computer with an Intel® 486
microprocessor. Server software architecture 1512 is described in further detail later in this
specification in conjunction with Fig. 16. Network interface 1514 is any compatible device for
interfacing with the network. For example, when the network is an Ethernet network, network
interface 1514 may be an Intel® Ether Express 16 card with suitable software (e.g., Novell Link
Support Layer (LSL) under the Novell Open Data-Link Interface (ODI)).

Server Subsystem Software Architecture

Referring now to Fig. 16, there is shown a block diagram of server software
architecture 1512 of server 102 of Fig. 15, according to a preferred embodiment of the present
invention. Server software architecture 1512 comprises server application 1602, media services
manager (MSM) 1608, media sync manager 1624, file input/output (I/O) driver 1626, network 1/0
driver 1628, and a plurality of media service providers (MSPs) 1612-1622. Server application 1602
and MSM 1608 communicate using the system-level protocol MSM application programming interface
(API) 1604. MSM 1608 and the MSPs communicate using the system-level protocol real-time media
services API 1610.

Server application 1602 of server software architecture 1512 allows an administrator of
multicast system 100 to define the configuration and destinations of channels. That is, server

application 1602 is used to select:

o which data streams are to be related together as channels,

o whether to transmit the channels to the network or store the channels to mass storage
device 1516 or both, R

o whether to transmit channel programs stored in mass storage device 1516, and

-10-

WO 95/10910 PCT/US94/11277

o whether to play any of the selected data streams locally to monitor the multicasting
services.
Server application 1602 asks media services manager (MSM) 1608 to gather and deliver various types
of data on one or more channels over the network.

Media services manager (MSM) 1608 manages the flow of data through server
software architecture 1512 as specified by server application 1602. Data may flow through MSM
1608 over the following data paths:

o From a source media service provider (MSP) to the network (for multicasting of data
received from an external source),

o From a source MSP to a local sink MSP (for monitoring the processing of data
received from an external source),

o From a source MSP to mass storage device 1516 (for storage of data received from an

external source for subsequent processing),

0 From mass storage device 1516 to the network (for multicasting of locally recorded
data), and
o From mass storage device 1516 to a local sink MSP (for monitoring the processing of

locally recorded data).

MSM 1608 recognizes the available source and sink MSPs and is responsible for initializing and
configuring the MSPs for the defined channels. MSM 1608 has no knowledge about the actual type
or format of the data flowing through it. Server application 1602, MSM 1608, and the MSPs provide
channel configuration capabilities both before and during channel transmission. MSM 1608 is
designed to be modified to support new features without significant changes in the rest of server
software architecture 1512.

There are (at least) two types of media service providers (MSPs): source MSPs and
sink MSPs. A source MSP is a media service provider that assists in the receipt of a data stream from
an external source or local mass storage device. A sink MSP is a media service provider that assists
in the local playing or recording of a data stream. MSPs are further categorized by media type. Thus,
multicast system 100 supports audio, video, and text source MSPs and audio, video, and text sink
MSPs. MSM 1608 may be modified to support MSPs in addition to audio, video, and text MSPs.

' Video source MSP 1612 receives a video data stream from video codec 1506 of Fig.
15 and transmits the video data to MSM 1608. Similarly, audio source MSP 1616 and text source
MSP 1620 receive audio and text data streams from audio driver 1510 and the text source,
respectively, and transmit the audio and text data to MSM 1608. Server software architecture 1512
also preferably has video, audio, and text sink MSPs 1614, 1618, and 1622 to provide local
monitoring capabilities. The processing of sink MSPs is described in further detail later in this

specification in conjunction with Fig. 18 and the discussion of the client software architecture.

-11-

WO 95/10910 PCT/US94/11277

Server application 1602 communicates with MSM 1608 using application-level MSM
application programming interface (API) 1604. MSM API 1604 supports the following function calls
by server application 1602:

o MSM_InitServices(): Initializes and configures media service providers (MSPs) to be
used; initializes either file or network input/output (I/O) system; specifies whether
application is a server or a client.

o MSM _StartServices(): Starts (or unpauses) any or all of the MSPs that were
initialized.

o MSM_StopServices(): Stops (or pauses) any or all of the MSPs that were initidlized.

o MSM_TerminateServices(): Terminates all of the MSPs that were initialized;
terminates network or file I/O in use.

o) MSM_ConfigureServices(): Dynamically configures any or all of the MSPs in use.

MSM API 1604 allows new applications to be developed on top of MSM 1608.

MSM 1608 uses file I/O driver 1626 to store and retrieve data to and from mass
storage device 1516. File 1/O driver 1626 supports the following function calls:

o InitFileOut(): Called by the MSM to prepare for sending data packets to a data file in
mass storage device 1516.

o WriteFile(): Posts data packets to the FilelOWndProc() function to write a data packet
to the data file at task time. Since data cannot be written to a file in interrupt context,
the WriteFile() function posts data packets to a file-IO window. When Windows gives
the file-IO window a chance to process its messages, the data packets will be written

to the file by the FileIOWndProc() function.

o] FilelOWndProc(): Writes data packets to the file at task time.

o RecycleBuffer(): Called by file I/O driver 1626 to give MSP buffers back to the
MSM after the data have been written to the data file. This function preferably resides
in the MSM.

o TerminateFileOut(): Closes the output file.

o InitFileIn(): Called by the MSM to prepare for reading data packets from a data file

in mass storage device 1516.

o ReadFileTimerProc(): Called by Windows to read a new data packet from the file.
File I/0 driver 1626 creates a system time to cause data packets to be read from the
file on a regular interval. A

o WriteBuffer(): Called by file 1/O driver 1626 to inform the MSM that a new data
packet has been read from the file. This function preferably resides in the MSM. In
response, the MSM delivers the new data packet to the appropriate MSP to be played.

o - TerminateFileIn(): Closes the input file.

-12-

WO 95/10910 PCT/US94/11277

The data file format for multicast system 100 includes a file header and some number of data blocks.
Each data block comprises a block header (specifying the type and size of the data) and a data packet
of the specified size. Only the MSPs know the format of the data packets. A data file may contain
any number of data blocks of different types and sizes. Those skilled in the art will understand that
data is written to and from mass storage device 1516 via sink and source MSPs.

MSM 1608 and an MSP communicate using real-time media service (RMS) API 1610.
RMS API 1610 is a system-level protocol used by MSM 1608 to control the acquisition,
synchronization, and playing of data via the MSPs. Any element in server software architecture 1512
capable of capturing, playing, transporting, or storing some form of data, in real time, is considered to
be a media service provider if it conforms to the RMS API standard. RMS API 1610 consists of one
group of function calls that an MSP exports for the MSM to call and two groups of function calls that
the MSM exports for MSPs to call (media synchronization calls and buffer management calls).

When the server application calls the MSM_ InitServices function, the MSM uses the
global dynamic loader (GDL) to load each MSP that will be used during the multicast session. The
GDL resolves the RMS API entry points in an MSP and stores the procedure addresses in a different
MSP control structure for each instance of every MSP. The GDL is described in further detail later in
this specification in conjunction with Figs. 31 and 32.

RMS API 1610 supports the following function calls by MSM 1608 into an MSP

(either source or sink):

o] OpenService(): Initializes/configures an MSP for MSM 1608 to use.

0 StartService(): Starts (or unpauses) an MSP.

o StopService(): Stops (or pauses) an MSP.

o CloseService(): Terminates an MSP when no longer needed.

o ConfigureService(): Configures an MSP as specified by the application.

o - RecycleBuffer(): Notifies a source MSP that MSM 1608 has completed sending one
of the source MSP’s buffers.

o WriteData(): Notifies a sink MSP that MSM 1608 has data for the sink MSP to play.

RMS API 1610 supports the following media synchronization function calls by an MSP to MSM
1608:
o NewSyncStamp(): Source MSP requests the current time from MSM 1608.
0 StartSyncClock(): Sink MSP informs MSM 1608 that the sink MSP is running and
valid for synchronization.
o StopSyncClock(): Sink MSP informs MSM 1608 that the sink MSP is not valid for
synchronization.
o TestSyncState(): Sink MSP requests MSM 1608 to determine whether a data packet is

early, in sync, or late.

-13-

WO 95/10910 PCT/US94/11277

RMS API 1610 supports the following buffer management function calls by an MSP to MSM 1608:

o ReceiveData(): Source MSP informs MSM 1608 that there is new data to send to the
network.
o RegisterBuffer(): Sink MSP registers all of the sink MSP buffers with MSM 1608 as

available at time of initialization.

o WriteDataComplete(): Sink MSP informs MSM 1608 that the sink MSP has
completed playing a buffer and that the buffer is therefore available to receive new
data.

In addition, MSPs can use custom window messages to communicate with the application.

Media sync manager 1624 provides time stamps for the component data streams. Any
type of data may be synchronized with any other type as long as the source MSPs stamp their data
with the appropriate capture time. Although it is possible to synchronize multiple media types (i.e.,
data streams), preferably only one sink MSP is defined to be the sync target, to which the other MSPs
of the channel are related. Media synchronization is described in further detail later in this
specification in a section entitled Media Synchronization.

Network 1/O driver 1628 receives the related data streams from MSM 1608 and
transmits data packets corresponding to those data streams to the network via network interface 1514.
Network 1/O driver 1628 is described in further detail later in this specification in conjunction with
Figs. 21, 22, and 23. '

Operational Overview of the Server Software Architecture

The basic operations of the server software architecture are to initialize the server
subsystem, start the server services, transmit data to the network (and/or write data to a file), stop the
server services when the session is complete, and terminate the server subsystem.

Server subsystem initialization is implemented as follows:

o The system operator asks the server application to initialize the server subsystem to
transmit selected data streams on specified logical channels.

o The server application passes the channel information (with the selected data streams
for the multicast session) to the media services manager (MSM) (using the
MSM_InitServices function).

o} The MSM asks the global dynamic loader (GDL) to load the appropriate media service
providers (MSPs), as well as the network I/O drivers.

o The GDL loads the specified MSPs and saves the procedure addresses for all real-time
media services (RMS) API entry points, along with other MSP control information,

into a unique structure for each MSP instance.

-14-

WO 95/10910 PCT/US94/11277

as follows:

(¢}

MSM opens the specified MSPs (using the OpenService function) and initializes the
network and/or file services. When an MSP is opened, the MSP is initialized into a
paused state. Using the OpenService function, the MSM passes to each MSP various
initialization and configuration information instructing the MSP what to do and how to
behave. The MSM also passes its entry-point proc addresses (i.e., the RMS API) to
each MSP to enable the MSP to communicate with the MSM.

Starting or resuming (i.e., unpausing) a multicast session by the server is implemented

The system operator asks the server application to start processing specified data
streams. In an alternative preferred embodiment, the server application starts the
processing automatically as part of initialization and does not require a separate request
from the system operator.

The server application passes the MSM a list of the data streams to be started (using
the MSM_StartServices function).

The MSM tells each appropriate MSP to start transferring captured data to the MSM
(using the StartService function).

Steady state server processing is implemented as follows:

Upon capturing new data, the MSP asks the MSM for an appropriate time stamp value
for the MSP’s new data packet (using the NewSyncStamp function). All MSP data
packets are preferably time stamped even if they are not being synchronized with other
data from other MSPs.

The MSP delivers the time-stamped data packet to the MSM (using the ReceiveData
callback function).

If data is to be transmitted to the network, then the MSM sends a copy of the new
data to the network I/O driver (using the WriteNet function).

If data is to be recorded locally, then the MSM sends a copy of the new data to the
mass storage device driver (using the WriteFile function).

If local monitoring is selected, then the MSM sends a copy of the new data to the
appropriate server sink MSP (using the WriteData function).

After receiving confirmations from the network and the mass storage device driver (via
RecycleBuffer function calls) and from the sink MSP (via a WriteDataComplete
function call) that the data have been processed, the MSM recycles the buffer to the
appropriate source MSP (using the RecycleBuffer function). The source MSP is then
free to refill the buffer with new data to repeat the process.

Stopping or pausing a multicast session by the server is implemented as follows:

-15-

WO 95/10910 PCT/US94/11277

o The system operator asks the server application to stop processing specified data
streams.
0 The server application passes the MSM the data streams to be stopped (using the

MSM_ StopServices function)..
0 The MSM tells each appropriate MSP to stop service (using the StopService function).
0 Each MSP will generally stop sending data to the MSM once it is stopped (i.e.,
paused). However, an MSP may continue to send data, if, for example, the MSP
needs to maintain the signal. Even if an MSP stops sending data to the MSM, the
MSP may continue to capture data, depending upon the specific requirements of the
MSP.
Server subsystem shutdown (i.e., termination) is implemented as follows:
0 The system operator asks the server application to terminate the multicast session.
o The server application tells the MSM to terminate services (using the

MSM_TerminateServices function).

o The MSM closes each MSP instance (using the CloseService function).
o Each MSP performs functions such as closing drivers or freeing buffers, as necessary.
0 After the MSPs are closed, the MSM shuts down the network stack and closes any

other non-MSP services.

Client Subsystem

Referring now to Fig. 17, there is shown a block diagram of client 104 of multicast
subsystem 100 of Fig. 1, according to a preferred embodiment of the present invention. Client
subsystem 104 receives from the network, and then processes, the data packets corresponding to a
selected channel. Server processing may include playing and/or recording the selected channel
program.

Network interface 1714 of client subsystem 104 receives audio, video, and text
network data packets from the network and transmits the data packets to client software architecture
1712. Client software architecture 1712 reconstructs the audio, video, and text data streams from the
network data packets. Client software architecture 1712 transmits the audio data stream to audio
driver 1710, which in turn processes and transmits the audio data to audio hardware 1702 for play.
Client software architecture 1712 transmits the compressed video data stream to video codec 1706 for
decompression and transmission back to client software architecture 1712. Client software architecture
1712 then transmits the decompressed video data stream as well as the text data stream to display

driver 1704 for processing and display on monitor 1708.

-16-

WO 95/10910 PCT/US94/11277

Client 104 also supports the recording of data from the network to mass storage device
1716 with or without concurrent playing of the multicast data. In addition, server 102 supports the
playing of recorded data previously stored in mass storage device 1716.

Network interface 1714 is any compatible device for interfacing with the network. For
example, when the network is an Ethernet network, network interface 1714 may be an Intel® Ether
Express 16 card with suitable software (e.g., Novell Link Support Layer under the Novell ODI).
Client software architecture 1712 is implemented on any suitable computer such as a personal
computer with an Intel® i486 microprocessor. Client software architecture 1712 is described in
further detail later in this specification in conjunction with Fig. 18. Audio driver 1710 may be any
suitable hardware/software device for processing audio data and is preferably a Microsoft Wave
Driver. Audio hardware 1710 may be any suitable device for playing digital audio data. Display
driver 1704 may be any suitable driver for displaying video and text data and is preferably Microsoft

Video for Windows. Monitor 1708 may be any suitable device for displaying video and text.

Client Subsystem Software Architecture

Referring now to Fig. 18, there is shown a block diagram of client software
architecture 1712 of client 104 of Fig. 17, according to a preferred embodiment of the present
invention.

Client application 1802 of client software architecture 1712 allows an user of multicast
system 100 to select a multicast channel to receive and process, where processing may include playing

the data, recording the data, or both. That is, client application 1802 is used to select:

o which data streams are to be processed and
o where to get the data streams (i.e., from the network or from mass storage device
1716.

Client application 1802 asks media services manager (MSM) 1808 to collect data from a selected
network channel and play it for the user as appropriate.

Client application 1802 asks the media services manager (MSM) 1808 to initialize and
start a sink media service provider (MSP) for each selected data stream. The user uses the user
interface of client application 1802 to configure the channels as described earlier in this specification
in conjunction with Figs. 2-14.

Network 1/0 driver 1828 receives network data packets from the network via network
interface 1714 and transmits data streams corresponding to those data packets to media services
manager (MSM) 1808. Network I/O driver 1828 is described in further detail later in this

specification in conjunction with Figs. 21, 22, and 23.

-17-

WO 95/10910 PCT/US94/11277

MSM 1808 manages the flow of data through client software architecture 1712 as
specified by client application 1802. Data may flow through MSM 1808 over the following data

paths:

0 From the network to a sink media service provider (MSP) (for playing multicast data),
0 From the network to mass storage device 1716 (for recording of multicast data for
subsequent processing), and
0 From mass storage device 1716 to a sink MSP (for playing of locally recorded
multicast data).
MSM 1808 recognizes the available sink MSPs and is responsible for initializing and configuring the
MSPs for the defined channel. MSM 1808 has no knowledge about the actual type or format of the
data flowing through MSM 1808. Client application 1802, MSM 1808, and the MSPs provide channel
configuration capabilities both before and during channel play. MSM 1808 is designed to be modified
to support new features without significant changes in the rest of client software architecture 1712.

Video sink MSP 1814 and text sink MSP 1822 receive a video data stream and a text
data stream, respectively, from MSM 1808 and transmits the video and text data to display driver 1704
of Fig. 17 for display on monitor 1708. Similarly, audio sink MSP 1818 receives an audio data
stream from MSM 1808 and transmits the audio data to audio driver 1710 for play on audio hardware
1702.

Client application 1802 communicates with MSM 1808 using application-level MSM
application programming interface (API) 1804, which preferably supports the same function calls as
MSM API 1604. MSM 1808 uses file I/O driver 1826 to store and retrieve data to and from mass
storage device 1716. File 1/O driver 1826 preferably supports the same function calls as file I/O
driver 1626. MSM 1808 and a sink MSP communicate using RMS API 1810, which preferably
supports the same function calls as RMS API 1610. MSM API 1604, file 1/O driver 1626, and RMS
API 1610 of server software architecture 1512 were described earlier in this specification in
conjunction with Fig. 16.

Media sync manager 1824 determines whether the time stamp pulled from a data
packet is "in sync" with the designated sync target data type. Designated sync target data are played
as soon as they are received. Media sync manager 1824 keeps track of whether the sync target is
running (i.e., whether there is data to which to sync) and, if so, media sync manager 1824 keeps track
of the last time stamp of that data type. When a non-target MSP asks whether it is in sync with the
sync target MSP, media sync manager 1824 responds by telling the non-target MSP to wait, play now,
hurry (i.e., the packet is behind schedule), or that there is an error. The non-target MSP decides how
to respond to these various messages. Media synchronization is described in further detail later in this

specification in a section entitled Media Synchronization.

-18-

WO 95/10910 PCT/US94/11277

Operational Overview of the Client Software Architecture

The basic operations of the client software architecture are to initialize the client

subsystem, start the client services, receive channel data from the network (or read data from a file),

stop the client services when the session is complete, and terminate the client subsystem.

as follows:

(s}

Client subsystem initialization is implemented as follows:

The user asks the client application to initialize the client subsystem with specified
channels.

The client application passes the channel information to the media services manager '
(MSM) (using the MSM_InitServices function), also specifying which data streams to
play and how to initialize them.

The MSM asks the global dynamic loader (GDL) to load the appropriate media service
providers (MSPs), as well as the network I/O drivers.

The GDL loads the specified MSPs and saves the procedure addresses for all real-time
media services (RMS) API entry points, along with other MSP control information,
into a unique structure for each MSP instance.

MSM opens the specified MSPs (using the OpenService function) and initializes the
network and/or file services. The OpenService function is used to instruct an MSP
how to initialize and configure itself. OpenService also delivers RMS entry points into
the MSM for the MSP to use.

Each client sink MSP posts its sink buffers to the MSM to be filled with data from the
network or from a file. When an MSP is opened, the MSP is initialized into a paused
state.

Starting or resuming (i.e., unpausing) a multicast session by the client is implemented

The user asks the client application to start processing specified data streams. In a
preferred embodiment, when the client subsystem is initialized, the client application
automatically starts data stream processing without requiring a separate request from
the user.

The client application passes the MSM a list of the data streams to be started (using
the MSM_StartServices function).

The MSM tells each appropriate MSP to start receiving and playing data (using the
StartService function).

Steady state client processing is implemented as follows:

Upon receiving new data from the network, the MSM transmits the data to the
appropriate MSP (using the WriteData function).

-19-

WO 95/10910 : PCT/US94/11277

o The MSP asks the media sync manager how the data should be handled (e.g., based on
whether the data is in sync with the sync target).

o The MSP processes the data according to the instructions from the media sync
manager. Processing may include waiting before playing the data, playing the data
right away, or dropping the data.

o After completing the processing of the data, the MSP recycles the buffer back to the
MSM (using the WriteDataComplete function) for use with new data.

) The MSM then posts the buffer back to the network 1/0O driver to be filled with new
data from the network to repeat the process.

Stopping or pausing a multicast session by the client is implemented as follows:

o The user asks the client application to stop processing specified data streams.

o The client application passes the MSM a list of the data streams to be stopped (using
the MSM_StopServices function).

o The MSM tells each appropriate MSP to stop service (using the StopService function).

o Each MSP stops playing data. Note that incoming data will still be sent to the MSPs
so that they can decide how to handle the data while in the paused state. For example,
a video MSP may need to continue to decompress video frames to be able to resume
(i.e., unpause) services in the future.

Client subsystem shutdown (i.e., termination) is implemented as follows:

o The user asks the client application to terminate the multicast session.

o The client application tells the MSM to terminate services (using the

MSM_TerminateServices function).

0 The MSM closes each MSP instance (using the CloseService function).
o Each MSP performs functions such as closing drivers or freeing buffers, as necessary.
o After the MSPs are closed, the MSM shuts down the network stack and closes any

other non-MSP services.

Buffer Management

Referring now to Fig. 19, there is shown a representation of the flow of data through
server software architecture 1512 of Fig. 16, according to a preferred embodiment of the present
invention. Data flow from a source MSP 1906 through the MSM 1904 to the network input/output
(1/0) driver 1902. If the server is monitoring the data being multicast over the network, then data also
flow from the MSM 1904 to a sink MSP 1908. The source and sink MSPs own (i.e., allocate and
free) the data buffers, because only the MSPs know the size and format of the data. Neither the MSM
or any of the media-independent services (e.g., the network 1/O drivers) monitor or alter data buffers,

although data may be appended for service processing as in the network 1/O driver.

-20-

WO 95/10910 PCT/US94/11277

As represented in Fig. 19, the flow of data through server software architecture 1512

proceeds as follows:

1.

If the server application selects monitoring of the data being multicast over the
network, then sink MSP 1908 allocates and registers sink buffers with MSM 1904
(using the RMS API function RegisterBuffer). This occurs when sink MSP 1908 is
opened and before any data has been captured by source MSP 1906.

Source MSP 1906 allocates source buffers, fills them with data (on some regular
interval for real-time data), and tells MSM 1904 when there is new data for MSM
1904 to receive (using the RMS API function ReceiveData).

After MSM 1904 receives a source buffer, it sends the source buffer data to the
network /O driver 1902 for transmission over the network (using MSM API function
SendBuffer).

If the appropriate sink MSP 1908 is open, MSM 1904 will copy the source buffer data
into the next available sink buffer, and write the sink buffer to be played by sink MSP
1908 (using the RMS API function WriteData).

After sink MSP 1908 plays a sink buffer, sink MSP 1908 informs MSM 1904 that the
sink buffer can be reused (using the RMS API function WriteDataComplete).

After the source buffer data has been transmitted over the network, network 1/O driver
1902 informs MSM 1904 that the source buffer can be reused (using the MSM API
function SendComplete).

After network I/O driver 1902 and sink MSP 1908 have released the source buffer
back to MSM 1904, MSM 1904 returns the source buffer to source MSP 1906 for
reuse (using the RMS API function RecycleBuffer).

Referring now to Fig. 20, there is shown a representation of the flow of data through

client software architecture 1712 of Fig. 18, according to a preferred embodiment of the present

invention. Data flow from the network input/output (I/0O) driver 2002 through the MSM 2004 to a

sink MSP 2008. The flow of data through client software architecture 1712 proceeds as follows:

1.

Sink MSP 2008 allocates and registers sink buffers with MSM 2004 (using
RegisterBuffer). This occurs when sink MSP 2008 is opened and before any data has
been received from the network.

When MSM 2004 initializes network 1/O driver 2002, the MSM specifies the data
streams to be received (i.e., which sink MSPs are open). MSM 2004 then posts all of
the appropriate sink buffers to the network (using the MSM API function PostBuffer).
When data is received by network 1/0 driver 2002 from the network, network I/O‘
driver 2002 fills a sink buffer and passes it to MSM 2004 (using the MSM API

function ReceiveBuffer).

21-

WO 95/10910 PCT/US94/11277

4. MSM 2004 then writes the sink buffer data to the sink MSP that owns the buffer
(using the WriteData function).

5. After sink MSP 2008 plays the sink buffer data, sink MSP 2008 informs MSM 2004
that the sink buffer can be reused (using the WriteDataComplete function).

6. After sink MSP 2008 informs MSM 2004 that the sink buffer data has been played,
MSM 2004 re-posts the buffer to network 1/0 driver 2002 to be reused (using the
PostBuffer function).
Figs. 19 and 20 apply to writing data to a network and receiving data from a network,

respectively. Those skilled in the art will understand that writing data to a file and reading data from

a file are implemented using analogous processing.

Network Input/Qutput Driver

Referring now to Fig. 21, there is shown a block diagram of the software architecture
of network I/O driver 2100, according to a preferred embodiment of the present invention. In a
preferred embodiment, network I/O driver 2100 comprises the functionality of both network 1/O driver
1628 of server software architecture 1512 of Fig. 16 and network 1/O driver 1828 of server software
architecture 1712 of Fig. 18.

In a server, network I/O driver 2100 receives related, time-stamped data streams from
the server media services manager and transmits data packets corresponding to those data streams to
the network for multicasting. In a client, network I/O driver 2100 receives related, time-stamped data
packets from the network and transmits data streams corresponding to those data packets to the client
media services manager for display and/or recording of the multicast channel data.

Network /O library 2102 of network I/O driver 2100 provides a high level network
interface to the modules of multicast system 100. The MSM uses the following network 1/O library

functions to communicate with network I/O driver 2100:

o InitNetOut(): Called by the MSM to prepare for transmitting data packets on the
network.

o WriteNet(): Transmits the specified data packet on the network using the appropriate
socket ID.

o RecycleBuffer(): Called by network I/O module 2100 to give MSP buffers back to the

MSM after the data have been transmitted on the network. This function preferably
resides in the MSM.

o TerminateNetOut(): Terminates the network output session.

o InitNetIn(): Called by the MSM to prepare for receiving data packets from the
network.

22-

WO 95/10910 PCT/US94/11277

0 NetPostBuffer(): Callca by the MSM to register an MSP buffer with the network for
receiving new data. MSP buffers are loaded into different socket queues based upon
data types. _

o WriteBuffer(): Called by network I/O driver 2100 to inform the MSM that a new data

packet has been received into one of the socket queues. This function preferably

resides in the MSM. In response, the MSM delivers the new data packet to the

appropriate MSP to be played.
o] TerminateNetIn(): Terminates the network input session.

Data link manager (DLM) 2106 orchestrates the flow of one or more channels over
one or more transport media (e.g., Ethernet network), where each channel comprises one or more
types of data streams (i.e., audio, video, text). DLM 2106 provides fragmentation and re-assembly
(i.e., de-fragmentation) of large data messages. Network I/O library 2102 and DLM 2106
communicate with one another using DLM application programming interface (API) 2104. DLM
2106 and DLM API 2104 are described in further detail later in this specification in conjunction with
Fig. 22.

Media dependent module (MDM) 2110 provides all transport media specific
functionality. There is one MDM 2110 for each transport medium / transport protocol pair (e.g.,
Ethernet network with Novell ODI-compliant driver running on an Intel Ether Express 16 network
card). MDM 2110 provides functionality for address manipulation and data transfer. DLM 2106 and
MDM 2110 communicate with one another using MDM API 2108. MDM 2110 and MDM API 2108
are described in further detail later in this specification in conjunction with Fig. 23.

Link packet manager (LPM) 2114 orchestrates the flow of link packets to and from
data link manager (DLM) 2106 and media dependent module (MDM) 2110. Link packet manager
(LPM) 2114 creates, destroys, and allocates link packets for network I/O driver 2100. A link packet is
a data structure shared between DLM 2106 and MDM 2110. Link packets provide efficient transfer of
data between DLM 2106 and MDM 2110. DLM 2106 and MDM 2110 communicate with LPM 2114,
and vice versa, using LPM API 2112. The link packet structure is defined later in this specification in
conjunction with Figs. 28 and 29.

A global dynamic loader (GDL) (not shown) is responsible for bringing DLMs and
MDMs into the system as needed and for discarding them when they are no longer needed. The GDL

is described in further detail later in this specification in conjunction with Figs. 31 and 32.

Data Link Manager

Referring now to Fig. 22, there is shown a block diagram of data link manager (DLM)
2106 of network 1/O driver 2100 of Fig. 21, according to a preferred embodiment of the present
invention. DLM 2106 is configured for only connectionless data transfers. DLM 2106 supports data

23.

WO 95/10910 PCT/US94/11277

transfers of up to 64K bytes per data message. The network may not be able to support data packets
of up to 64K bytes. In that case, in the server, DLM 2106 fragments data messages as ne'cessary for
transmission on the network. In a client, DLM 2106 re-assembles (de-fragments) the network data
packets received from the network into the original data messages. DLM 2106 preserves message
boundaries (i.c., the data messages re-assembled by DLM 2106 in a client are the same as the data
messages given to DLM 2106 in a server).

DLM 2106 also manages sockets. A socket is a logical combination of a network
address and a port number. The network address is passed through DLM 2106 to MDM 2110 for
processing. The ports on the network address are maintained by DLM 2106. In a server, DLM 2106
is responsible for multiplexing the ports onto the correct network addresses. This multiplexing of
ports onto addresses is similar to the multiplexing of channels onto connections in a connection-
oriented environment.

Data is sent from a server (i.e., source) socket to a client (i.e., destination) socket.
Before the data is sent, the server source socket must be registered with the server DLM. The client
socket is not registered with the server DLM. For packet reception at the client, the address and port
of the client destination socket must be registered with the client DLM. The server socket is not
registered with the client DLM. The client may receive data from any network node.

DLM 2106 is also responsible for maintaining a priority-based queue between all
sockets on the same address. The priority-based queue allows packets from high priority sockets to be
placed in an address queue ahead of packets from lower priority sockets. In a client, when a packet
arrives on a particular address, DLM 2106 is responsible for determining the correct socket via the
port number contained within the packet.

Session manager 2202 of DLM 2106 defines the network transport to use for data
transfers using the functions DLM_BeginSession and DLM_EndSession to begin and end sessions,
respectively. These functions and other functions and data structures identified in this section are
described in further detail in this specification in the following sections.

Port/socket manager 2204 is responsible for maintaining user sockets. Port/socket
manager 2204 uses the functions DLM_RegisterSocket and DLM_UnRegisterSocket to register and
unregister sockets, respectively.

Address manager 2206 maintains the network addresses specified within the sockets.
When the user requests a socket with a previously undefined network address, address manager 2206
opens the address with the MDM and adds it to its table of current addresses.

Message output manager 2208 maintains the queue of buffers waiting to be output to
the network. A queue is maintained for each MDM address. The function call DLM_dgSend causes
message output manager 2208 to place the received buffer into the queue in order of priority. The

message output manager 2208 then instructs asynchronous fragmenter 2210 to output one or more

-24-

WO 95/10910 PCT/US94/11277

fragments (i.e., data packets containing portions of the data message stored at the head of the buffer
queue) to the network.

In a server, asynchronous fragmenter 2210 performs the actual transmission of data to
the MDM. Fragmenter 2210 is called for every network event (i.e., transmission-completed event or
packet-received event) or whenever a buffer is placed onto the queue. Fragmenter 2210 gets an empty
link packet from link packet manager 2114, checks the flow control with the MDM, copies the next
fragment from the buffer at the head of the queue into the link packet for the address that triggered
the even’é and transmits the filled, addressed packet to the MDM. When the buffer at the head of the
queue has been completely fragmented and transmitted to the MDM, fragmenter 2210 instructs send
complete handler 2212 to call the DLM Send Complete Callback function to inform network 1/0
library 2102 that DLM processing of the buffer is complete.

In a client asynchronous de-fragmenter 2214 re-assembles (i.e., de-fragments) the data
packets received from the network. When a data packet arrives, the MDM calls de-fragmenter 2214
which checks the queue of receive buffers for the correct address. At the head of the queue, there is a
distinguished element that is currently being built. De-fragmenter 2214 verifies that the incoming data
packet should be placed at the next expected offset within the buffer under construction and, if so,
copies the data into the buffer. If the receive buffer is complete, de-fragmenter 2214 instructs
message receiver 2218 .to transmit the completed buffer to network 1/O library 2102 using the DLM
Message Receive Callback function.

If there is no receive buffer currently under construction and if the received data
packet should begin a new buffer, then de-fragmenter 2214 removes receive buffers from the head of
the queue until a buffer is found that is large enough to contain the entire arriving data message.
Receive buffers that are too small are returned to network I/O library 2102 using E_TOOSMALL
error code of the DLM Message Receive Callback function call. If the queue empties before a receive
buffer of sufficient size is found, then de-fragmenter 2214 drops the received packet and enters the
dropping state. Data will be dropped for this socket until a packet that begins a new data message
arrives on the same address.

Receive buffer manager 2216 maintains the queues of receive buffers that the user has
posted using the DLM_dgPostBuffer function call. One receive queue is maintained for each socket
being serviced.

To establish a connectionless data transfer session, the server and a client each call the
DLM_BeginSession and DLM_RegisterSocket functions to their respective local DLMs. The local
DLM responds by calling the DLM Session Callback function with the REGISTER_COMPLETE
event to notify the server/client that the socket has been successfully registered. The server sends data

over the network by calling the DLM_dgSend function to the server DLM. Upon receipt of the data,

225

WO 95/10910 PCT/US94/11277

the client DLM notifies the client of receipt of the data by calling the DLM Message Receive Callback
function specified for this socket.

To close a socket, the server calls the DLM_UnRegisterSocket function to which the
server DLM responds by calling the DLM Session Callback function with the
UNREGISTER_COMPLETE event. The server then calls the DLM_EndSession function to which the
server DLM responds by calling the DLM Session Callback function with the SESS_CLOSED event.
The client and client DLM implement an identical sequence of function calls.

¢ The following sections provide further information regarding the data structures and

functions for interfacing a DLM with a connectionless network.

Data Structures of the Data Link Manager
This section describes the data structures that the DLM presents externally.

Session information is contained in a DLM session ID word, a 32-bit unsigned integer

with bits as defined below:

31 28 27 22 21 16 15 8 7 0
ID Session
Type Reserved index DLMID Reserved

Bits 0-7 of the session ID are reserved and are not used by the DLM. Bits 8-15 represent the DLM
ID, given in DLM_BeginSession (described below). Bits 16-21 represent the session index. The
session index preferably begins at 0 for the first session and is incremented for each additional session
opened on the DLM. There are a maximum 64 sessions on any one DLM. Bits 22-27 are also
reserved. Bits 28-31 represent the identifier type.

Socket information is contained in a DLM socket ID word, a 32-bit unsigned integer

with bits defined as follows:

31 28 27 23 22 18 17 12 11 6 5 0
ID Port Address Session
Type ID Index Index DLMID Reserved

Bits 0-5 of the socket ID are reserved and are not used by the DLM. Bits 6-11 represent the DLM
ID, given in DLM_BeginSession (described below). Bits 12-17 represent the session index for the
session on which this socket is defined. Bits 18-22 represent the internal address index of the network
address. The internal address index preferably begins at 0 for the first address and is incremented for
each additional address. Bits 23-27 represent the port identifier of the socket. Bits 28-31 represent
the identifier type.

The DLM characteristics structure DLMCHARS contains relevant data about the
following limitations and parameters of a given DLM:

DImld ID given to this DLM on DLM_BeginSession.

-26-

WO 95/10910 PCT/US94/11277

MaxSessions Maximum number of sessions that the DLM can support.

MaxConnections Maximum number of simultaneous connections that the DLM can
support. For a DLM that supports only connectionless data transfers,
this value is preferably 0.

MaxChannels Maximum number of simultaneous channels that the DLM can support
on any given connection. For a DLM that supports only
connectionless data transfers, this value is preferably 0.

MaxAddresses Maximum number of simultaneous, different network addresses that
the DLM can support.

MaxPorts Maximum number of simultaneous ports that the DLM can support on
any given network address.

MaxSockets Maximum number of simultaneous sockets that the DLM can support.

When a socket is opened via DLM_RegisterSocket, the following requested
characteristics of the network services to be provided are specified using the address characteristics

structure ADDRCHAR:

BitRate Network services must support at least this bit rate for the operation to
be useful.
Priority Requested priority of the socket. This may range from 0 to

MAX_PRIORITY, where 0 is the lowest priority and
MAX_PRIORITY is the highest.
For connectionless data transfers, a socket specifies source and destination points for
data. A socket consists of both a network address and a port.
A DLM_dgEvent structure is used in session callbacks to indicate that an event has
taken place on the network. The following events are preferably supported:
SESS_CLOSED Network session is closed.
REGISTER_COMPLETE Network socket registration is complete.
UNREGISTER_COMPLETE Network socket has been de-registered.
DG_ERROR An error event has occurred.

DILM Interface Functions for Connectionless Networks

Before data transfer begins, the DLM is initialized and the network access is
established. This section describes the functions for setting up network access in multicast system

100. The following functions support setup/teardown and data transport at the DLM layer:

DLM_BeginSession Begins a network session. R
DLM:RegisterSocket Registers a network address with the network.
DLM_dgSend Queues a buffer for sending data over the network.

27-

WO 95/10910 PCT/US94/11277

DLM_dgPostBuffer Makes a buffer available for receiving data over the network.
DLM_Pause Pauses a network session.

DLM_UnPause Unpauses a network session.

DLM_UnRegisterSocket Unregisters a previously registered network socket.
DLM_EndSession Closes a network session.

Several of the functions of the DLM complete asynchronously. These functions generate callbacks to
the user at a later time. The following callback function types are used by the DLM to notify the user

of asynchronous events:

DLM Session Callback Called upon the completion of an asynchronous DLM

event on this session (e.g., REGISTER_COMPLETE).
DLM Send Complete Callback Called upon the completion of a send on this socket.
DLM Message Receive Callback Called upon receiving data on this socket.

The DLM Session Callback function notifies the user that a network socket has been
registered or unregistered. The DLM Send Complete Callback function is activated whenever data has
been extracted from a user’s buffer and enqueued for transmission. It is not a guarantee that the data
has actually been delivered to a client. The entry point for the DLM Send Complete Callback
function is the specified SendCallback parameter to the DLM_RegisterSocket function. The DLM
Message Receive Callback function is activated when data has arrived on the network for a particular
socket.

The DLM_BeginSession function prepares the DLM for subsequent network access.
DLM_BeginSession has no local callbacks and no peer callbacks.

The DLM_EndSession function ends the specified session. Any data arriving at an
outstanding socket is ignored. All outstanding buffers are returned to the user via the Message
Receive Callback function with the status set to indicate that the socket closed while the buffer was
outstanding. All outstanding network sockets on this session are implicitly unregistered by this
function.

The DLM_RegisterSocket function is called to open a communication socket as
requested by the user. The user can request that a specific address and port ID be opened as a socket
or that the DLM should select an address and port ID. The user can either request an address with a
specific value or have one assigned. The address is then registered and a handle returned to the user
in the callback data (i.e., the DLM address ID). The address handle is used in all other calls when a
reference to the network address is required. A synchronous return from this function call with a good
status indicates that the request for a new address has been successfully submitted. It does not indicate
that the address can be used. The session callback with the REGISTER_COMPLETE event type-

signals the completion of the registration process.

-28-

WO 95/10910 : PCT/US94/11277

The DLM_dgSend function is called by the user to send buffers of data over the
communication network. A synchronous return from this function with a good status indicates that the
buffer was accepted for transmission and will be enqueued in the future. A synchronous return with a
bad status indicates that the buffer will not be queued up and that the callback function will not be
activated. The callback SendComplete from this function guarantees that the buffer has been posted to
the network queue. There is no guarantee that the buffer was actually sent. The send complete
callback function SendComplete is called when the buffer is posted to the network.

The DLM_dgPostBuffer function is called to make empty buffers available to the
DLM in which incoming data may be placed. A synchronous return from this function with a good
status indicates that a buffer has been posted to the network to receive data. A synchronous return
with a bad status indicates that the buffer was never posted and that the callback function will not be
activated. The data received callback ReceiveComplete from the DLM indicates that a new buffer that
arrived over the network is now available. The receive complete callback function ReceiveComplete
is called when DLM has filled the buffer with data from the network.

The DLM_UnRegisterSocket function deletes the socket from the DLM.
DLM_UnRegisterSocket may make a local callback to UNREGISTER_COMPLETE.

The DLM_Pause function stops network operations at the DLM level. Until the user
calls DLM_UnPause, all incoming data will be lost and all calls to DLM_dgSend will return a paused
status. Buffers may still be posted to the network with DLM_dgPostBuffer, but they will not be filled
with data and returned to the user until after the call to DLM_UnPause. Multiple calls to DLM_Pause
have no effect.

The DLM_UnPause function resumes network operations at the DLM level. After this
call, data will be sent and received normally. Multiple calls to DLM_UnPause, as well as calls

without a previous call to DLM_Pause, have no effect.

Media Dependent Module
Referring now to Fig. 23, there is shown a block diagram of media dependent module

(MDM) 2110 of network /O driver 2100 of Fig. 21, according to a preferred embodiment of the
present invention. MDM 2110 hides the network specifics from DLM 2106 and other higher layers of
network I/O driver 2100. MDM 2110 is the only module of network I/O driver 2100 that is affected
by a change in the physical network. MDM 2110 conforms to a single API, independent of the
physical medium in use. If a network implementation does not support a particular MDM function,
MDM 2110 returns an error specifying that the requested function is not available. In Fig. 23, all
dotted lines indicate function calls through the Microsoft Windows DPMI host to the network interface
(preferably a Novell LSL and a Novell ODI-compliant driver). MDM 2110 recognizes network

addresses for data transport, but has no knowledge of the defined ports/sockets.

-20.

WO 95/10910 PCT/US94/11277

Session manager 2302 of MDM 2110 has two external entry points: the
MDM_BeginSession function call and the MDM_EndSession function call. Session manager 2302 is
responsible for installing and removing the MDM as an ODI protocol stack. MDM 2110 allows only
one active session. When a session is opened, if there is no active session, MDM 2110 locates the
network interface and registers itself as a protocol stack. This operation is defined in Novell
documentation entitled "Open Data-Link Interface Developer’s Guide for DOS Workstation Protocol
Stacks."

The protocol ID to service is extracted from the local address parameter of the
MDM_BeginSession function call. If a session is already active and the user calls the
MDM_BeginSession function, the parameters are checked to determine if they match the currently
active session. If the parameters match, then the reference count on the session is incremented and
MDM 2110 returns the session ID of the currently active session. If the parameters do not match, an
error is returned. To end a session, the user calls the MDM_EndSession function. If there are open
addresses on the current session, an error is returned. Otherwise, the reference count on the current
session is decremented. If the reference count reaches zero, then MDM 2110 removes itself as a
protocol stack.

Address manager 2304 is responsible for maintaining a list of the currently active
network addresses and for verifying the validity of any given address. When a new address is given
to MDM 2110 via the MDM_Register function call, the new address is entered into the list of active
addresses. If the new address is a multicast address, then MDM 2110 notifies the network interface of
the new multicast address via a function call to the network interface. When the user calls the
MDM_UnRegister function, the given address is removed from the list of currently active addresses.

In a server, link packet output manager 2306 orchestrates the transmission of data
packets from DLM 2106 to the network. Link packet output manager 2306 receives a link packet
from DLM 2106 via the MDM_dgSend function call. Link packet output manager 2306 verifies the
address and, if verified, places the packet into the send queue for subsequent transmission to the
network.

In a server, send process manager 2310 transmits packets from the send queue to the
network. Send process manager 2310 is governed by a timer. ‘Each time the timer interrupts the send
process, send process manager 2310 gets an event control block (ECB) from ECB manager 2308.
Send process manager 2310 then removes a link packet from the head of the send queue and copies
the data from the link packet into an ECB fragment. A copy is implemented for the ECB fragment to
reside in low DOS memory for communication with the network interface. When the transmission of
the link packet to the network is complete, the network interface instructs send complete handler 2318

to identify which link packet was completed and to notify the user via the MDM Send Complete

-30-

WO 95/10910 PCT/US94/11277

Callback function specified in the MDM_Register call. Send complete handler 2318 then frees the
indicated ECB.

In a client, receive process manager 2316 orchestrates the reception of data packets
from the network. The network interface informs receive process manager 2316 that data is available.
Receive process manager 2316 gets an event control block (ECB) from ECB manager 2308 and passes
the ECB to the network interface for data reception. When the network interface has filled the ECB
with data, the network interface passes the filled ECB back to receive process manager 2316. Receive
process manager 2316 copies the network data from the ECB into a link packet, frees Fhe network
ECB, and instructs link packet receiver 2314 to pass the link packet to the user via the MDM Message
Receive Callback function specified in the MDM_Register call.

Flow control manager 2312 ensures that the upper layers do not overfill MDM 2110
with data. The upper layers calls the MDM_dgClearToSend function, before sending a packet. Flow
control manager 2312 checks the number of outstanding ECBs and the size of the send queue.

The following sections provide further information regarding the data structures and

functions for interfacing an MDM with a connectionless network.

Data Structures of the Media Dependent Module

This section describes the data structures that the MDM presents externally.
Session information is contained in an MDM session ID word, a 32-bit unsigned

integer with bits as defined below:

31 28 27 22 21 16 15 8 7 0
ID Session
Type Reserved Index DLMID MDM ID

Bits 0-7 contain the MDM ID, given in MDM_BeginSession. Bits 8-15 represent the DLM ID, also
given in MDM_BeginSession. Bits 16-21 represent the session index. The session index preferably
begins at 0 for the first session and is incremented for each additional session opened on the MDM.
There are a maximum 64 sessions on any one MDM. Bits 22-27 are reserved. Bits 28-31 represent
the identifier type.

Address information is contained in an MDM address ID word, a 32-bit unsigned

integer with bits as defined below:

31 28 27 22 21 16 15 8 7 0]
ID Address Session
Type index Index DLMID MDM ID

Bits 0-7 contain the MDM ID, given in MDM_BeginSession. Bits 8-15 represent the DLM ID, also
given in MDM_BeginSession. Bits 16-21 represent the session index for the session on which this

"network address is defined. Bits 22-27 represent the address index of the network address. The

-31-

WO 95/10910 PCT/US94/11277

address index preferably begins at O for the first address and is incremented for each additional
address. There are a maximum of 64 open addresses on any one MDM. Bits 28-31 represent the
identifier type.

Since a DLM is able to operate with one or more MDMs, the DLM is preferably able
to adapt to the characteristics of a particular MDM. The MDM characteristics structure MDMCHARS
is used by MDM_ GetCharacteristics to report the following relevant data about the MDM:

Mdmld MDM identifier used to refer to this MDM.

PacketSize Most efficient packet size for transmission on the network.
MaxSessions Maximum number of simultaneous sessions that the MDM can support.
MaxConnections Maximum number of simultaneous connections that the MDM can

support. Preferably 0 for connectionless data transfers.
MaxAddresses Maximum number of simultaneous network addresses that the MDM
can support.

When a network address is opened via MDM_Register, the minimum bit rate of the
network services to be provided is specified using the address characteristics structure ADDRCHAR.

A TADDR structure is used to represent a network address. For the Novell ODI
implementation of connectionless data transfers, the first six bytes of the address field of the TADDR
structure represent the value of the network address.

An MDM_dgEvent structure is used in the callback to indicate that an event has taken
place on the network. This structure is used for all event callbacks except for the data send and data
receive callbacks. The following events use the datagram specific event structure MDM_dgEvent:

SESS_CLOSED Network session is closed.
REGISTER_COMPLETE Address registration is complete.
UNREGISTER_COMPLETE Address has been de-registered.
DG_ERROR _ An error event has occurred.

MDM Interface Functions for Connectionless Networks
As with the data link manager (DLM), the media dependent module (MDM) is

initialized and the network access is established before data transfers begin. The following are the
MDM functions related to connectionless data transfer:
MDM _ BeginSession Begins a network session.
MDM_Register Opens and registers a network address.
MDM_dgSend Queues a buffer for sending data over the network.
MDM_UnRegister Unregisters a previously registered address.
MDM_dgClearToSend Allows the user of MDM (e.g., a DLM) to perform flow control by

verifying that the lower level network queue is not choked.

-32-

WO 95/10910 PCT/US94/11277

MDM_Pause Pauses a network session.
MDM_UnPause Unpauses a network session.
MDM_EndSession Closes a network session.
Certain MDM functions complete asynchronously. These functions begin an action and the user is
called back when that action completes. The following callback functions are used by the MDM layer
to communicate with the calling DLM:
MDM Session Callback Called upon the completion of an asynchronous MDM
event on this session, e.g., REGISTER_COMPLETE.
MDM Send Complete Callback Called upon the completion of a send on a given
network address.
MDM Message Receive Callback Called upon receiving data on this network address.

The MDM Session Callback function notifies the user that a network address has been
registered or unregistered.

The MDM Send Complete Callback function is activated whenever data has been
extracted from a link packet and enqueued for transmission. There is no guarantee on the delivery of
data on the network. The entry point for the MDM Send Complete Callback function is defined in the
SendCallback parameter to the MDM_Register function.

The MDM Message Receive Callback function is activated when data has arrived on
the network and has been copied into a link packet for the DLM. At the completion of the callback,
the MDM assumes that it can free the link packet back to the link packet pool. The DLM copies any
data that it intends to use after the callback. The entry point for the MDM Message Receive Callback
function is defined in the ReceiveCallback parameter to MDM_Register function.

The MDM_BeginSession function prepares MDM for subsequent network usage before
connectionless operations begin. Bytes 6-11 of the address field of the local address parameter for the
MDM _BeginSession function contain the protocol ID to use. Session IDs are unique across all
MDMs. MDM_BeginSession returns synchronously and has no local or peer callbacks.

The MDM_EndSession function ends the specified session. MDM_EndSession makes
no peer callbacks, but may make a local SESS_CLOSED callback.

The MDM_Register function is called by a DLM to open an address at the MDM
level. If the address has not been previously registered, the MDM opens the network address to allow
data sends and receives. The MDM then returns a new MDM address ID to be used on all sends and
receives for this address. If the address has been previously registered, the MDM will return the
previously allocated MDM address ID. It is up to the DLM to correctly respond to the user.

A synchronous return from this function call with a good status indicates that the

request for a new address has been successfully submitted. It does not indicate that the address is

-33-

WO 95/10910 PCT/US94/11277

ready for use. The event callback with the REGISTER_COMPLETE event type signals the
completion of the registration process. '

The status of the REGISTER_COMPLETE callback specifies whether the address has
been previously registered. If the Status field in the MDM dgEvent structure is good, then the address
has not previously been seen. If the Status field in the MDM_dgEvent structure indicates that the
address has been previously registered, then the address ID returned is the same value as the address
returned previously. MDM_Register may make a local REGISTER_COMPLETE callback.

The function MDM_dgClearToSend verifies that a link packet of the given size can
currently be sent on the network on the specified MDM address. The DLM uses this function to
perform flow control. MDM_dgClearToSend returns one of the following status indication values:

TRUE Data can currently be sent.
FALSE Sending the indicated data is not currently possible.
MDM ‘dgClearToSend makes no local or peer callbacks.

The MDM_dgSend function is called by the DLM to send link packets over the
communication network. The DLM is responsible for ensuring flow control by calling
MDM _dgClearToSend prior to this call. A synchronous return from this function with a good status
indicates that the link packet was accepted for transmission and will be enqueued in future. A
synchronous return with a bad status indicates that the link packet will not be queued up and the
callback function will not be activated.

The callback from this function guarantees that the link packet has been posted to the
network queue. There is no guarantee that the link packet was actually sent. The MDM will transmit
the packet on the network address corresponding to the given MDM address ID. In order for the link
packet to arrive at the correct network address, and be handled by the receiving DLM, the caller of
MDM _dgSend (e.g., the server DLM) must initialize the header fields of the link packet with both the
server (i.e., source) and client (i.e., destination) sockets. The Send Complete callback function is
called when the link packet is posted to the network.

The MDM_UnRegister function disables the address for sending or receiving data, and
frees up any resources associated with the address. MDM_UnRegister may make a local
UNREGISTER_COMPLETE callback.

The MDM_Pause function stops network send operations at the MDM level. Until the
user calls MDM_UnPause, all incoming data will be lost. Calls to MDM_dgSend are still allowed and
will operate normally in order to drain send queues of other network layers. Multiple calls to
MDM_Pause have no effect. ,

The MDM_UnPause function resumes network operations at the MDM level. After
this call, data will be received normally. Multiple calls to MDM_UnPause, as well as calls without a

previous call to MDM_Pause, have no effect.

-34-

WO 95/10910 PCT/US94/11277

Data Packet Formats

Referring now to Fig. 24, there is shown a representation of data flow through each
server and client of multicast system 100 of Fig. 1, according to a preferred embodiment of the
present invention. Data is transmitted between a media service provider (MSP) and the media services
manager (MSM) in data packets that conform to the appropriate Level 1 format. Similarly, data
transmitted between the MSM and the data link manager (DLM) conforms to the Level 2 data packet
format; data transmitted between the DLM and a media dependent module (MDM) conforms to the
Level 3 data packet format; data transmitted between an MDM and the appropriate network interface
conforms to the Level 4 data packet format; and data transmitted by the network interface to the
network and received by the network interface from the network conforms to the Level 5 data packet
format.

At a server, audio, video, and text MSPs receive audio, video, and text data streams
from the appropriate media capture subsystems and transmit Level 1 data packets (i.e., data messages)
to the MSM. The MSM generates and transmits Level 2 data packets to the DLM, which in turn
generates and transmits Level 3 data packets to the appropriate MDM. The MDM generates and
transmits Level 4 data packets to the network interface, which in turn generates and transmits Level 5
data packets over the network to the clients.

At a client, the process is reversed. The network interface receives Level 5 data
packets from the network and generates and transmits Level 4 data packets to the MDM. The MDM
generates and transmits Level 3 data packets to the DLM, which in turn generates and transmits Level
2 data packets to the MSM. The MSM generates and transmits Level 1 data packets to the appropriate
MSPs, which reconstruct the data streams for play in the appropriate media playback subsystems.

There are three different Level 1 data packet (i.e., data message) formats
corresponding to the three different media types (audio, video, and text) handled by the MSPs of
multicast system 100. Each Level 1 data packet contains media-specific header information and
media-specific raw information.

Referring now to Fig. 25, there is shown a representation of a Level 1 audio data
packet. A Level 1 audio data packet comprises a two-byte time stamp followed by 2048 bytes of
audio data. The time stamp is attached to each Level 1 packet as it is captured in the server. The
client uses the time stamp to update the synchronization élock when playing the data. Audio data is
preferably captured continuously in 2048-byte messages conforming to the Microsoft Wave audio
format defined in the Microsoft Multimedia Programmer’s Reference.

Referring now to Fig. 26, there is shown a representation of a Level 1 video data
packet. A Level | video data packet comprises a standard 28-byte Microsoft Video for Windows
header, a four-byte reserved value, and up to 18 kilobytes of data. The data area size limit of 18

kilobytes is based on video data rates that are themselves governed by the video processing algorithm

-35-

WO 95/10910 PCT/US94/11277

implemented in multicast system 100 of Fig. 1. Those skilled in the art will understand that
alternative preferred embodiments of the present invention that implement other video processing
algorithms may support higher data rates and therefore greater data area sizes in Level 1 video data
packets.

Referring now to Fig. 27, there is shown a representation of a Level 1 text data
packet. A Level 1 text data packet comprises up to 200 bytes of text data followed by a specified
string termination character (e.g., the NULL character).

The MSM preferably does not interpret or modify the data packets that it receives. In
the server, the MSM forwards Level 1 data packets to the DLM. In the client, the MSM forwards
Level 2 data packets to the appropriate MSPs. As such, Level 1 and Level 2 data packets are
preferably identical.

Referring now to Fig. 28, there is shown a representation of a Level 3 data packet
(i.e., link packet) comprising a 24-byte DLM header and up to 1476 bytes of data. In the server, the
DLM is capable of receiving Level 2 data packets of up to 65,536 bytes (64K bytes) in size. Without
interpreting the Level 2 data, the DLM fragments the Level 2 data packets into data segments of up to
1476 bytes. To each data segment, the DLM adds a 24-byte DLM header to generate the Level 3 data
packet or link packet.

Thus, for example, the server DLM may receive a 2050-byte Level 2 audio data
packet (see Fig. 25) and generate two Level 3 data packets: one 1500-byte Level 3 packet
(comprising a 24-byte DLM header followed by the first 1476 bytes of the Level 2 audio packet) and
one 598-byte Level 3 packet (comprising a 24-byte DLM header followed by the last 574 bytes of the
Level 2 audio packet). Similarly, the server DLM may receive a 201-byte Level 2 text data packet
(see Fig. 27) and generate one 225-byte Level 3 data packet (comprising a 24-byte DLM header
followed by the 201 bytes of the Level 2 text packet).

Referring now to Fig. 29, there is shown a representation of the 24-byte DLM header
of a Level 3 data packet. The DLM header is defined as follows:

Destination Address Network address (a 6-byte unsigned integer) of the destination for the

packet.

Destination Port Port number (a 1-byte unsigned integer) of the destination for the
packet.

Source Address Network address (a 6-byte unsigned integer) of the source of the
packet.

Source Port Port number (a 1-byte unsigned integer) of the source of the packet.

Message Number DLM sequence number (a 4-byte unsigned integer) of the message on

the given source socket. DLM uses this field to reconstruct messages

from connectionless datagram link packets.

-36-

WO 95/10910 PCT/US94/11277

Offset Offset in the message of the first byte of the link packet. The source
socket, message number, and offset uniquely determine the location of
the bytes of this link packet in the message. This allows the DLM to
reconstruct messages on a per-socket basis. Offset is a 2-byte
unsigned integer.

Size Number of bytes in the data part of the link packet. Size is a 2-byte
unsigned integer.

Total Size Total number of bytes of the user’s message that is being transmitted.
Total Size is a 2-byte unsigned integer.

The destination address and destination port comprise the destination socket. Similarly, the source
address and the source port comprise the source socket. Since the packet is transmitted between the
machines, Destination Address, Destination Port, Source Address, and Source Port are expressed as the
real network addresses and port numbers, not the local ID values.

At a client, the DLM receives link packets (i.e., Level 3 data packets) from the MDM
and reconstructs the Level 2 data packets (i.e., data messages) for transmission to the MSM. The
destination port ID in the DLM header is used by the client DLM to distinguish data from multiple
source channels.

The MDM preferably does not interpret or modify the data packets that it receives. In
the server, the MDM forwards Level 3 data packets to the network interface. In the client, the MDM
forwards Level 4 data packets to the DLM. As such, Level 3 and Level 4 data packets are preferably
identical. The MDM is a pass-through layer that provides a common interface for the DLM for all
network protocols.

Referring now to Fig. 30, there is shown a representation of a Level 5 data packet
comprising a 14-byte network header and up to 1500 bytes of data. In the server, the network
interface receives Level 4 data packets (i.e., link packets) of up to 1500 bytes in size. Without
interpreting the Level 4 data, the network interface preappends the network header to create a network
packet (i.e., Level 5 data packet) compatible with the corresponding communication medium. For
example, when the network interface is a Novell ODI-compliant driver, the network interface creates
an IEEE 802.3 Ethernet Il frame by preappending the 14-byte network header of Fig. 30 to the Level
4 (link) packet. The destination and source addresses are standard 6-byte Ethernet MAC addresses.
The 2-byte packet type for multicast system 100 is preferably the hexadecimal value 8442. The
Ethernet II frame is handed to the ODI-compliant driver and transported over the physical medium.
The DLM link packet header is transmitted on the network along with the network header and the
DLM data since the DLM header contains information to be used for reconstructing the message-on

the receiving channel.

-37-

WO 95/10910 ‘ PCT/US94/11277

At the client, the network interface receives Level 5 data packets (e.g., Ethernet II
frames), strips off the network headers, and transmits the resulting Level 4 data packets (i.e., link
packets) to the MDM for transmission to the DLM for eventual reconstruction of the application data
streams.

Those skilled in the art will understand that alternative preferred embodiments of the
present invention may employ transport media other than, or in addition to, the Ethernet network. In
these alternative embodiments, the sizes of the Level 3, 4, and 5 data packets may vary depending
upon the requirements of the particular transport media employed. The 24-byte Level 3 DLM header

is preferably the same, however, for all preferred embodiments of the present invention.

Media Synchronization
In multicast system 100, data streams may be related in two different ways. First, two

or more data streams may be related by being components of the same channel. Second, two or more
data streams may be related by being time stamped for synchronization. Data streams are related as
channels to provide clients with the ability to receive and process all of the data streams that constitute
a program (e.g., the audio and video components of a television program). Data streams are related
by time stamping to provide clients with the ability to synchronize the playing of the data streams.

Time stamping is not always necessary. For example, in a channel comprising the
audio and video components of a television signal and text of stock market quotes, the text data stream
need not be time stamped, since the play of the text data stream by a client does not have to be
synchronized with the play of the audio and video data streams.

Two characteristics of multicast system 100 make media synchronization desirable.
First, video capture component 1504 and audio capture component 1508 of server 102 of Fig. 15 may
capture data at different rates. For example, video data may be captured at a rate of ten video
messages/second, while audio data may be captured at a rate of eight audio messages/second. Second,
data is transmitted from the server to clients via connectionless data transfer, in which data typically
arrives at clients in an asynchronous fashion.

In the server, when a source MSP (1612, 1616, or 1620 of Fig. 16) receives new data,
the MSP asks MSM 1608 for a new time-stamp from media sync manager 1624, which the MSP adds
to the data header before sending the data to MSM 1608 for transmission to the network and/or
storage to mass storage device 1516.

When time stamping is performed, one of the data streams in the channel is designated
as the sync target. A client plays data corresponding to the sync target as soon as the data are
received from the network. The client attempts to synchronize the playing of ali of the other time-

stamped data streams with the playing of the sync target.

-38-

WO 95/10910 - PCT/US94/11277

In the client, media sync manager 1824 of Fig. 18 keeps track of the designated sync
target and orchestrates the playing of data for the other time-stamped data streams. Assume, for
example, that the audio data stream of a channel having audio and video components is the designated
target sync. When audio sink MSP 1818 receives new audio data from the network, MSP 1818 asks
sync manager 1824 for playing instructions. Since the audio data stream is the sync target, sync
manager 1824 instructs MSP 1818 to play the audio data when MSP 1818 is available to play the
data.

Continuing with the same example, when video sink MSP 1814 receives new video
data from the network, MSP 1814 asks sync manager 1824 for playing instructions. Sync manager
1824 determines how to instruct MSP 1814 by comparing the time stamp 7, for the new video data
with the time stamp T, of the last audio data. If the magnitude of the difference between T, and T, is
less than a first threshold (preferably 200 milliseconds), then sync manager 1824 instructs video sink
MSP 1814 to play the new video data when MSP 1814 is available to play the data.

If the video data leads the audio data by more than the first threshold, but less than a
second threshold (preferably 1500 milliseconds), then sync manager 1824 instructs video sink MSP
1814 to wait before playing the video data. Video sink MSP 1814 preferably places the video data in
a queue for later playing.

If the video data lags the audio data by more than the first threshold, but less than the
second threshold, then sync manager 1824 instructs video sink MSP 1814 to hurry. Video sink MSP
1814 preferably performs processing to attempt to catch up to the audio sync target (e.g., some form
of backoff strategy in which one or more video frames are skipped).

If the video data leads or lags the audio data by more than the second threshold, then
sync manager 1824 informs video sink MSP 1814 that an error has occurred. If the video data lags
the audio data by more than the second threshold, then video sink MSP 1814 preferably drops the
video data. If the video data leads the audio data by more than the second threshold, then video sink
MSP 1814 preferably saves the video data in a queue to await the corresponding audio data. If the
queue becomes full, then video sink MSP 1814 overwrites the oldest video data with the newest video
data.

Media synchronization may be used to synchronize multiple independent data streams
in any multipoint computer-based network, not just in a multicasting environment. It also applies
where data streams are sent on different network channels, to different network addresses, and/or on

different networks.

Global Dynamic Loading

Referring now to Fig. 31, there is shown a block diagram of the software architecture

of each of server 102 and clients 104 of multicast system 100 of Fig. 1 for loading and unloading of

-30-

WO 95/10910 PCT/US94/11277

service libraries, according to a preferred embodiment of the present invention. In Fig. 31, service
requester 3102 represents any software module of the multicast application program 3104 of server
102 or client 104 that uses sets of functions stored as function libraries in memory 3110. Windows
services 3108 is part of the Microsoft Windows application 3106.

Global dynamic loader (GDL) 3116 is part of the executable of multicast application
program 3104. GDL 3116 receives all requests to load and unload service libraries from service
requester 3102 and posts the requests to global dynamic loader executable (GDLE) 3112, a separate
executable running in the system alongside the multicast application program 3104 and the Microsoft
Windows application 3106. ‘GDLE 3112 receives and processes the requests for loads and unloads
from GDL 3116. In the case of a library load request, GDLE 3112 hands GDL 3116 the entry points
for the requested library of loaded services 3114, which GDL 3116 in turn passes back to service
requester 3102.

More particularly, service requester 3102 of multicast application 3104 begins the
process of loading a library by calling the GDL function GDL_LoadDLL, specifying:

o The name of the library to load;
o A first pointer to an array of pointers to null terminated strings specifying the entry
points to return; and
o A second pointer to an array of pointers to receive the entry points. The second
pointer must point to a block of memory large enough to contain all of the entry
points that the caller expects to receive.
The GDL_LoadDLL function determines whether GDLE 3112 is already running. If not, then GDL
3116 starts GDLE 3112 via a call to the Windows entry point WinExec and saves the handle to the
GDLE window. If GDLE 3112 is already executing, GDL 3116 retrieves the handle to the GDLE
window via a call to the Windows entry point FindWindow.
. GDL 3116 encapsulates all of the parameters into the tLoadDLL structure. GDL 3116
passes the address of the tLoadDLL structure to GDLE 3112 via a call to Windows entry point
SendMessage with the GDLE window as the destination window and a pointer to the structure as the
[Param of the message.

Upon receipt of the message from GDL 3116, GDLE 3112 determines if the requested
library is new or if it has already been loaded. If it is new, then GDLE 3112 reserves space in its
internal load table for the new library, resets a reference count for this library to 0, and calls the
Windows entry point LoadLibrary to load the requested library. If the load fails, then GDLE 3112
frees the internal table entry and returns O as the handle to the library. If the requested library has
already been loaded, then GDLE 3112 increments the reference count for this library in its internal

load table and uses the handle to the library stored in its internal load table.

-40-

WO 95/10910 PCT/US94/11277

For each function in the list of indicated function names, GDLE 3112 then calls the
Windows entry point GetProcAddress and stores the returned address into the papFunct area of the
given tLoadDLL structure. After completing the message, GDLE 3112 sends the Windows handle for
the loaded library back to GDL 3116 as the return value of the SendMessage call. Control, which was
blocked in the SendMessage call, is then returned to GDL 3116, which has the entry points available.
Since GDL 3116 passes its papFunct parameter to GDLE 3112 as the location to store the entry
points, GDLE 3112 has automatically loaded the caller’s memory with the requested entry points.
GDL 3116 simply passes the return value from GDLE 3112 as its return value.

To unload a library, service requester 3102 makes a call to the GDL eﬁtry point
GDL_UnloadDLL, specifying the handle to the previously loaded window. GDL 3116 then performs
a Windows PostMessage to GDLE 3112 specifying a request to unload a library and the handle of the
library to load.

GDLE 3112 examines its internal load table to determine if the specified library has
been loaded. If the library has been loaded and its reference count is greater than 1, GDLE 3112
simply decrements the reference count and returns. If the reference count is 1, then GDLE 3112 calls
the Windows function FreeLibrary to unload the given library from memory. GDLE 3112 then frees
its internal load table entry for this library and returns an errors code indicating success or failure.

When GDL 3116 uses the Windows PostMessage function to instruct GDLE 3112 to
unload a library, the message is placed onto the messages queue for the GDLE main window for
processing in the future. Since Windows does not use a preemptive scheduling algorithm, at the cali
to the PostMessage function, control is not passed immediately to GDLE 3112. The thread from the
service requester 3102 to GDL 3116 to unload the library is not preempted but is allowed to complete
before the message to GDLE 3112 is processed. Once this thread is complete, Windows gives some
execution time to GDLE 3112 and the message is processed, the library is unloaded, and multicast
application 3104 is free of the loaded library.

GDL 3116 is also responsible for cleaning up any libraries that have been loaded, if
multicast application 3104 should terminate abnormally. When multicast application 3104 terminates,
Windows calls the GDL WEP function. GDL 3116 posts a message instructing GDLE 3112 to
terminate. GDLE 3112 then prompts the user for the libraries that it should free from its internal load
table, frees the indicated libraries, and terminates itself, thereby freeing all memory that it uses. GDL
3116 then completes its termination sequence and is unloaded by Windows.

Those skilled in the art will understand that the global dynamic loading (GDL/GDLE)
scheme of multicast system 100 provides certain advantages over traditional solutions to loading
libraries. These advantages include reduced memory usage, increased flexibility, and efficient
unloading of libraries in the presence of asynchronous callbacks. These advantages are particularly

"evident when multicasting information whose content is not fixed when the I'Jrogram is loaded as in

-41-

WO 95/10910 PCT/US94/11277

multicast system 100. For example, one channel may contain audio, video, and text data streams,
while another may contain only audio. In addition, different channels may be transmitted over
different network transport media at different times.

Traditional methods for loading libraries include (1) the monolithic model (i.e., using
one monolithic executable file containing code to process all functionality necessary), (2) the Windows
dynamically linked library (DLL) model (i.e., using dynamically linked libraries and letting the
underlying operating system swap the libraries in and out of memory as necessary) and (3) using
straight calis under program control to the Windows LoadLibrary and FreeLibrary functions. The
GDL/GDLE scheme of multicast system 100 provides advantages over each of these tfaditional
solutions.

Because multicast system 100 is driven by interrupts in the DOS/Window
environment, it cannot be swapped to disk. Therefore, it is important to keep the memory usage of
the program small in order to avoid over-use of scarce resources. In the GDL/GDLE scheme of
multicast system 100, the GDLE application determines what services are required. It then loads the
services and initializes them. When a service is no longer needed, the GDLE application is able to
purge it from memory thereby reclaiming the storage space and reducing overall memory usage.
Thus, the GDL/GDLE scheme of multicast system 100 uses memory efficiently.

In addition, multicast system 100 is flexible, because the main application program
does not have to be re-written and re-linked when a new media type (i.e., a new type of data stream)
is added to the system. In the GDL/GDLE scheme of multicast system 100, the user or the
application specifies the module to load. The GDLE is then responsible for loading and executing the
specified module. When the service is no longer needed, the application is able to remove the module
from memory. With this model of program organization, the application is not changed to experiment
with new services. The user simply passes the names of the new services to the application when
prompted. In the case where two modules are tested but both cannot be resident in memory at the
same time, the application need not be changed. The user enters the name of the first module, tests it,
and unloads it. The user is then free to enter the name of the second module, test it, and unload it.
There are no conflicts since the two modules are never resident in memory at the same time.

Similarly, the monolithic model of a single executable uses memory less efficiently
and is more inflexible than the GDL/GDLE scheme of multicast system 100. Under the monolithic
model, all of the functions (i.e., audio, video, and text) are loaded as part of the single executable,
even when only a subset of those functions (e.g., audio only) are required for a particular multicast
session. As such, the monolithic model uses memory inefficiently.

In addition, the monolithic model is inflexible. The monolithic model would require

that the system be re-compiled and/or re-linked, and that a separate executable be built to test each

A2

WO 95/10910 PCT/US94/11277

new media type. For example, if several new video algorithms were being tested, several distinct
applications would need to be generated and managed.

Similarly, the Windows dynamically linked library (DLL) model uses memory less
efficiently and is more inflexible than the GDL/GDLE scheme of multicast system 100. The
Windows DLL model cannot necessarily unload a subsystem when channel selection changes. There
is no mechanism in Windows to inform it that an automatically loaded library is no longer needed.
For example, if a user begins by watching a program containing audio, video, and text, the three
modulgs are brought into memory when they are first referenced. If the user should then switch to a
program containing only text, Windows cannot unload the audio and video libraries since Windows
cannot be informed that those libraries are no longer being used. As a result, the unused libraries
continue to occupy memory.

The Windows dynamically linked library model is also inflexible in that the
application program must be informed of any new modules to load. The new modules may be
brought into memory automatically by Windows, but the name of the library files must still be
embedded in the main executable. This would require re-linking the system for each new combination
of libraries. If two new modules could not both be resident in memory at the same time, two new
versions of the system would need to be built, since a dynamically loaded library cannot be unloaded
automatically. Two code segments would have to be written -- one to interface with each of the
mutually exclusive libraries.

Although the problems of memory usage and flexibility can be solved by the
traditional method of using straight calls to the Windows LoadLibrary and FreeLibrary functions, there
remain problems related to the unloading of libraries in the presence of asynchronous callbacks. The
application is preferably able to unload a module during an asynchronous callback or execution thread
from that module. The monolithic model and the standard Windows dynamically linked library model
are impractical, since neither of them allows the user to unload libraries on the fly. For the following
reasons, using straight calls to the Windows LoadLibrary and FreeLibrary functions are also
inadequate.

| Referring now to Fig. 32, there is shown a diagram of the timing of function calls
when a user opens/closes one module (associated with function library A), which in turn opens/closes
another, module (associated with function library B), under the traditional method of using straight
calls to the Windows LoadLibrary and FreeLibrary functions. In Fig. 32, time increases from top to
bottom.

When a user opens library A, library A initializes itself, loads library B, and calls the
function that instructs library B to initialize. When library B has completed its initialization, library B

returns to library A, which then returns to the user.

-43-

WO 95/10910 PCT/US94/11277

When the user calls the function to close library A, library A calls the function that
instructs library B to close (at time 1 of Fig. 32). Since the close operation may be time consuming, it
is preferably implemented asynchronously. Thus, library B returns synchronously to library A that the
close operation is started (at time 2) and then starts the time consuming asynchronous process of
closing itself. Library A returns to the user that the synchronous part of the close operation is started.

Some time later, library B receives an interrupt that the close operation is complete.
Library B then calls into library A to inform library A that the close operation is complete (time 3).
Librar; A then informs the user that the close operation is complete. The user does everything that it
needs to do with the notification and returns to library A (time 4), which then returns to library B
when library A is finished with its clean-up.

To complete the process of closing library B, library A also preferably unloads library
B. It is assumed that when a library is unloaded it is removed from memory and any subsequent
execution in the library is a fatal error. At time 1 of Fig. 32, library A cannot unload library B since
library A is about to call into library B to start the close operation. At time 2, library A cannot
unload library B since the close operation has only started. Library B must still execute to finish the
close operation, and, in fact, library B must be available as the target from an interrupt when the close
operation is complete. So library A cannot unload B during the close call.

At times 3 and 4, library A cannot unload library B since library A is on an execution
thread that will return to library B when the processing of the asynchronous close notification is
complete. Library A would generate a fatal error if library A were to unload library B and then return
to library B. Therefore, at no time along this thread of execution has library A been able to unload
library B. In fact, the only safe place is at time X in the time line. Unfortunately, library A has, to
its user, been closed by this time and library A will not receive any further cycles in which to execute.
Thus, under the traditional method of using straight calls to the Windows LoadLibrary and
FreeLibrary functions, library A cannot efficiently unload library B.

Under the GDL/GDLE scheme of multicast system 100, library A signals the GDLE
with a message that instructs the GDLE to unload library B as soon as the current execution thread
completes. This message is preferably sent at time 4 in Fig. 32. Thus, the current invention avoids
the problems relating to the unloading of libraries in the presence of asynchronous callbacks. An
advantage of the GDL/GDLE scheme of multicast system 100 is that it allows the user to unload
libraries at any time, even from execution threads within the same library. GDL signals GDLE to
unload the library with the understood semantics of "As soon as you can, after this thread completes,
unload this library." The GDL/GDLE implementation under Windows makes use of the fact that
Windows will not preempt a thread that is executing. The delay until after the thread is complete is

automatic in the call to PostMessage.

-44.

WO 95/10910 PCT/US94/11277

Those skilled in the art will understand that the GDL/GDLE scheme of multicast
system 100 is applicable to operating systems other than Microsoft Windows. In applying the
GDL/GDLE scheme in other operating environments, one must look at what functionality is already
provided by the operating system. In an operating system that can preempt an executing thread at any
time, other mechanisms are preferably used to ensure that all execution in the library is complete. For
example, the unload of a library is usually executed just before a return. Even though the thread
returns to the unloaded library, it is not long.

Referring again to Fig. 32, library A would execute an unloac at time 4 and
immediately return to library B. Library B would then immediately return out of the interrupt context.
Execution would occur in library B but it is on the order of about 10 machine instructions. In an
operating system that supports messages scheduled to be picked up after a specified time, the GDL
could schedule the message to the GDLE at a time far enough in the future where the thread would
have to have completed (e.g., 500 milliseconds).

In an alternative preferred embodiment of the present invention, each library
determines if there are any threads executing in it. In Fig. 32, library B would determine that there is
a thread in it before it calls library A with the close complete notification. Library A would call the
GDL to unload library B at time 4 as before and the GDL may immediately send a message to the
GDLE. The GDLE would then ask library B if there is an active thread before unloading it.

In this preferred embodiment, every library that is loadable with GDL/GDLE has an
entry point named ActiveThread that returns "TRUE" if there is an active thread and "FALSE" if only
the current call is active. The GDLE is then responsible for polling the library until it reports that
there are no active threads before actually unloading the library. When the GDLE receives a message
to unloéd a library, the GDLE begins another process that repeatedly polls the library to determine if it
has an active thread. If the library is active, this process blocks for some time giving the thread a
chance to complete. This process continues until the library reports that it is inactive.

In addition, the GDLE preferably unloads a library immediately in the case of
abnormal termination of the application. A thread may be active in a library when the application
"crashes." Because of the abnormal behavior, the thread may never complete and the GDLE
preferably does not wait on it. If so instructed, the GDL may inform the GDLE not to wait on the
completing thread.

In general, the GDL/GDLE scheme of the present invention may be implemented in
any application that needs to load various services that are not known when the program is built.
When the user requests new functionality that is not currently supported by the image in memory, the
application loads the library via the GDL. The library and the entry points may be specified by the

application or the application may prompt the user for this information.

-45-

WO 95/10910 PCT/US94/11277

Under a preferred embodiment, neither the application, the GDL, nor the GDLE make
any assumptions about the internals of the libraries. Under an alternative preferred embodiment where
the environment requires library support, the application does not change actions based on the
functionality of the library. For example, the GDL and GDLE may isolate the application from
needing to be aware of the fact that a library may close down asynchronously and cannot be unloaded.
The GDL and GDLE provide an interface to the application where the loads and unloads of libraries
are essentially atomic. The application is therefore freed from needing to know specific behavior of
the library.

Those skilled in the art will understand that alternative embodiments of the multicast
system of the present invention may support data types other than or in addition to audio, video, and
text, such as graphics, vibration, or smell. In alternative embodiments, some or all of the different
data types may be compressed for transmission over the network.

Alternative embodiments of the text reader bar of the present invention may have a
single line of horizontally sliding text, one or more lines of vertically scrolling text, or one or more
lines of statically displayed text (e.g., as in subtitles).

Alternative embodiments of the multicast system of the present invention may support
clients that may receive and process more than one multicast channel at a time. Alternative
embodiments may have more than one server. Preferably, each server has all the functionality of a
client to provide monitoring capabilities.

Alternative embodiments of the network topology of the present invention may include
transport media other than Ethernets and local area networks (LANSs), such as combinations of LANs
and wide area networks (WANSs) connected by T1 lines and routers.

The user interface of the present invention may be used for systems other than those
providing multicast services. In general, the user interface may be used in any system that receives
and processes multiple data types, including systems that support point-to-point communication (i.e.,
one copy of data selectively sent to one client), broadcasting (i.e., indiscriminately sending data to
every client on the network), and multipoint communication without multicasting (i.e., same data
copied multiple times - one copy sent to each selected receiver). Moreover, the data need not be
transmitted over a computer network. For example, the data could be played from a local storage
device such as a CD-ROM.

Those skilled in the art will understand that multicast system AA may be used to
provide real-time or non-real-time transmission of one or more data streams over the network. Real-
time transmission implies that the rate of transmission is roughly equivalent to the rate of playing. A
client may receive and play real-time transmitted data in real time. Non-real-time transmission implies
that the rate of transmission is less than the rate of playing. A client may receive and record non-real-

time transmitted data for future playback at a real-time rate.

-46-

WO 95/10910 PCT/US94/11277

It will be further understood that various changes in the details, materials, and
arrangements of the parts which have been described and illustrated in order to explain the nature of-
this invention may be made by those skilled in the art without departing from the principle and scope

of the invention as expressed in the following claims.

-47-

WO 95/10910 PCT/US94/11277

CLAIMS
What is claimed is:
1. A client for a network-based multicast system, comprising:
(a) a media services manager for receiving data from the network for a selected

channel, said channel comprising one or more related data streams; and

®) one or more media service providers for receiving and playing said data from
said media services manager, wherein each media service provider receives and plays data
corresponding to a data stream of said channel.

2. The client of claim 1, further comprising:

©) a media sync manager, wherein said media service providers play said data in
accordance with instructions from said media sync manager.

3. The client of claim 2, wherein said media sync manager instructs a media
service provider to play said data now if said data corresponds to a sync target.

4. The client of claim 2, wherein said media sync manager instructs a media
service provider in accordance with a comparison of a time stamp of said data to a time stamp of data
corresponding to a sync target.

5. The client of claim 1, further comprising:

(c) a network input driver for receiving said data from the network and for

transmitting said data to said media services manager.

6. The client of claim 5, wherein said network input driver comprises:
€8] a data link manager; and
3 one or more media dependent modules, wherein each of said media

dependent modules corresponds to a network medium of said network-based multicast system,
wherein:

each of said media dependent modules receives a plurality of link packets from
a network interface of a corresponding network medium, each of said link packets comprising a link
packet header and a link packet data field;

each of said media dependent modules transmits said plurality of link packets
to said data link managef;

said data link manager combines one or more link packet data fields from one
or more link packets corresponding to the same data type to generate a data message; and

said data link manager transmits said data message to said media services
manager.

7. The client of claim 1, further comprising:

-48-

WO 95/10910) _ PCT/US94/11277

©) a client application for informing said media services manager of a first
selected channel, wherein said media services manager loads and opens a media service provider for
each data type of said first selected channel.

8. The client of claim 7, wherein:

said client application informs said media services manager of a second selected
channel;

said media services manager loads and opens a media service provider corresponding
to each data type of said second selected channel not comprised in said first selected channel; and

said media services manager closes and unloads a media service provider
corresponding to each data type of said first selected channel not comprised in said second selected
channel.

9. The client of claim 1, wherein said media services manager is capable of
pausing and unpausing the playing of data by one or more of said media service providers.

10. A method of processing data by a client in a network-based multicast system,
comprising:

(a) receiving data for a selected channel from the network by a media services
manager of said client, said channel comprising one or more related data streams;

(b) receiving said data from said media services manager by one or more media
service providers of said client; and

© playing said data by said media services manager, wherein each media service
provider receives and plays data corresponding to a data stream of said channel.

11. The method of claim 10, wherein step (c) comprises the steps of:

¢)) providing instructions by a media sync manager of said client to said
media service providers;

) playing said data by said media service providers in accordance with
said instructions.

12. The method of claim 11, wherein step (c)(1) comprises the step of providing
instructions by said media sync manager to a media service provider to play said data now if said data
corresponds to a sync target.

13. The method of claim 11, wherein step (c)(1) comprises the step of providing
instructions by said media sync manager to a media service provider in accordance with a comparison

of a time stamp of said data to a time stamp of data corresponding to a sync target.

14. The method of claim 10, wherein step (a) comprises the steps of:
¢)) receiving said data by a network input driver from the network; and
2) transmitting said data by said network input driver to said media

services manager.

-49.

WO 95/10910 PCT/US94/11277

15. The method of claim 14, wherein step (a)(1) comprises the steps of:

(i) receiving a plurality of link packets by one or more media
dependent modules of said network input driver from one or more network media of said network-
based multicast system, each of said link packets comprising a link packet header and a link packet
data field, wherein each of said media dependent modules corresponds to one of said network media;

(ii) transmitting said plurality of link packets by said media
dependent modules to a data link manager of said network input driver;

(iii) combining one or more data link manager data fields from one
or more link packets corresponding to the same data type by said data link manager to generate a data
message; and

(iv) transmitting said data message by said data link manager to
said media services manager.

16. The method of claim 10, further comprising the steps of:

(d) informing said media services manager of a first selected channel by a client
application of said client;

(e) loading and opening a media service provider for each data type of said first
selected channel by said media services manager.

17. The method of claim 16, further comprising the steps of:

® informing said media services manager of a second selected channel by said
client application;

(2) loading and opening a media service provider corresponding to each data type
of said second selected channel not comprised in said first selected channel by said media services
manager; and

(h) closing and unloading a media service provider corresponding to each data
type of said first selected channel not comprised in said second selected channel by said media
services manager.

18. The method of claim 10, further comprising the steps of:

(d) pausing by said media services manager the playing of data by one or more of
said media service providers; and

(e) unpausing by said media services manager the playing of data by one or more
of said media service providers.

19. A server for a network-based mplficast system, comprising;:

(a) one or more media service providers for receiving data corresponding to a
channel, said channel comprising one or more related data streams, wherein each media service

provider receives data corresponding to a data stream of said channel; and

-50-

WO 95/10910 PCT/US94/11277

(b) a media services manager for receiving said data from said media service

providers and for transmitting said data to the network.

20. The server of claim 19, further comprising:

(c) a media sync manager for providing time stamps for said data.

21. The server of claim 19, further comprising:

©) a network output driver for receiving said data from said media services

managers and for transmitting said data to the network.

22. The server of claim 21, wherein said network output driver comprises:
¢)) a data link manager; and _
) one or more media dependent modules, wherein each of said media

dependent modules corresponds to a network medium of said network-based multicast system,
wherein:
said data link manager receives a plurality of data messages from said media
services manager;
said data link manager fragments each of said data messages into one or more
link packets, each of said link packets comprising a link packet header and a link packet data field;
said data link manager transmits said link packets to a corresponding media
dependent module; and
said media dependent module transmits said link packets to a corresponding
network interface of said network-based multicast system.
23. The server of claim 19, further comprising:
©) a server application for informing said media services manager of a first
selected channel, wherein said media services manager loads and opens a media service provider for
each data type of said first selected channel.
24. The server of claim 23, wherein:
said server application informs said media services manager of a second selected
channel;
said media services manager loads and opens a media service provider corresponding
to each data type of said second selected channel not comprised in said first selected channel; and
said media services manager closes and unloads a media service provider
corresponding to each data type of said first selected channel not comprised in said second selected
channel.
25. A method of processing data by a server in a network-based multicast system,

comprising:

-51-

WO 95/10910 PCT/US94/11277

(a) receiving data corresponding to a channel by one or more media service
providers of said server, said channel comprising one or more related data streams, wheréin each
media service provider receives data corresponding to a data stream of said channel;

(b) receiving said data by a media services manager of said server from said
media service providers; and

(©) transmitting said data by said media services manager to the network.

26. The method of claim 25, wherein step (a) comprises the step of time stamping
said data by a media sync manager.

27. The method of claim 25, wherein step (c) comprises the steps of:

¢)) receiving said data by a network output driver from said media
services manager; and
2) transmitting said data by said network output driver to the network.

28. The method of claim 27, wherein step (a)(2) comprises the steps of:

@) receiving a plurality of data messages from said media services
manager by a data link manager of said network output driver;

(ii) fragmenting each of said data messages into one or more link
packets by said data link manager, each of said link packets comprising a link packet header and a
link packet data field;

(iii) transmitting said link packets by said data link manager to a
media dependent module of said network output driver; said media dependent module corresponding
to a network medium of said network-based multicast system; and

(iv) transmitting said link packets by said corresponding media
dependent module to a corresponding network interface of said network-based multicast system.

29. The method of claim 25, further comprising the steps of:

(d) informing said media services manager of a first selected channel by a server
application of said server;

(e) loading and opening a media service provider for each data type of said first
selected channel by said media services manager.

30. The method of claim 29, further comprising the steps of:

® informing said media services manager of a second selected channel by said
server application;

(2) loading and opening a media service provider corresponding to each data type
of said second selected channel not comprised in said first selected channel by said media services

manager; and

-52.

WO 95/10910 PCT/US94/11277

(h) closing and unloading a media service provider corresponding to each data

type of said first selected channel not comprised in said second selected channel by said media

services manager.

.53

PCT/US94/11277

WO 95/10910

901

|
ujueli

00T

T °D14

80T

1/28

WO 95/10910 PCT/US94/11277

FIG. 2

200

202

204

2/28

WO 95/10910 PCT/US94/11277

FIG. 3

300

2
Guide...

302 e 1

306

Disne VT
B3-J0A Disco A
05:00PM ESPN [AVP]

O1:00PM MSTE
304 v 1]

3/28

WO 95/10910 PCT/US94/11277

FIG. 4

' 4/28

WO 95/10910 PCT/US94/11277

FIG. 5

5/28

WO 95/10910 PCT/US94/11277

FIG. 6

6/28

WO 95/10910 PCT/US94/11277

FI1G. 7

7/28

WO 95/10910 k PCT/US94/11277

FIG. 8

8/28

WO 95/10910 PCT/US94/11277

FIG. 9
ﬁu}de """ ' 3 e

' 90
| Always On Ion,.. : _<——/'_ °
' vVideo Window :

e «Audto Controls:

9/28

WO 95/10910 PCT/US94/11277

FIG. 10

10/28

WO 95/10910 PCT/US94/11277

FIG. 11

11/28

WO 95/10910 PCT/US94/11277

FIG. 12

12/28

WO 95/10910 PCT/US94/11277

FIG. 13

1300

13/28

WO 95/10910 PCT/US94/11277

FIG. 14

|00

14/28

PCT/US94/11277

WO 95/10910

TSI~ _

rA 54!
N\

WHOMLIN]
oL

JOVAHILNI
MYOMLIN

h

451!

(4]

J01A3Q
19Y401S
SSYN
4
X3t
WLISIA
806
wwmﬁ) !
JUNLIILTHOHY YINTNG o1any ININOJKOD orany
vkLdos ¢ WLy ¢
NINIS oranv WLIOIA O1an D0VNY
334
A|‘|||
el NOISIAITAL
’ 110 L 0301A Fuwnwmqwu 0341A
0301A WLI9IA 030N D0IVNY
doct))
§ bOST 20ST
¥IAYAS ST "O1d

15/28

PCT/US94/11277

WO 95/10910

01671 90617
4IA140 104005 ¥IATYO ¥IAINA 4IAI40 21000
AV1dSIa 1¥3L orany orany AY1dSIa 0301A
ol KoY 4 oL KoY oL HOoY4
2291 0297 8191 9191 VIOt
e ATV
JOVAYILNT . !
NYOMLIN dSH dSH dSH dSi dSH o ¢191
oL WNIS 304N0S NIS 304N0S INIS 124105
1x31 11 o1any o1any 0301A 0301A
Y3IATHO
o1 | ~0197
SHORLIN (1dV SHY) J0VAYILNI ONTHKYHOOMd NOILYOITddY SIDIAYIS VIGIN IWIL-TVIY
\]
YIOVNVH
8291 (WSH) YI9YNVH SIDTAYIS VIQIN INAS
J VIQIN
43ATHO 8091
979 ﬁ.\ o/1 114 (1dV HSH)
0 J0V4YILNT ONTHHVYHOOHA NOTLVOITddY HIOVNVA SIDIAYIS VIO [N_ b09T | 4A]!
9TGT NIAu
9Y40LS SSYH
044 ONV OL NOILYDI1dd¥ H3AY3S -
od 2097
2181
JUNLIALTHOYY FYVMLAOS YIAYIS 9T 'Old

16/28

PCT/US94/11277

WO 95/10910

80LT

YOLINOW |7

JUVHOUVH

h

€

orany

(

A VA!

vort

DI
I9VH0LS
SSVH
boLY _
\ |
131
WLIDIA
¥IATYG
AV1dSIa
030IA | WRLDILIHOWY
Juvkidos ¢
WLI910 i
0
IATHO |, 1any
010NV WLI010
A\ 0301 § 0301A
40230 v dHOD
011 2300
0301A
9021~
INAITD 4T "9I4

VILT

[

JOVRIINT Jq—— NHOMLIN

NYOMLIN Hoyd

rAYA!

17/28

PCT/US94/11277

WO 95/10910

FOLT

2281

A
Y30
orany
0l

o 18181

ANIS
orany

FOLT
HIATHO
A14SI0

oL

dSH
ANIS
0301A

YI81

(IdY SHY) JOVAYIINI ONIWHYVYOOMd NOTLVOI1ddY SIDTAYIS VIGIH IMIL- 13

0T8T

HIATHO
- AV4SIQ
oL
2AVA!
JOV44IINT
WHOMLIN dSH
HO¥4 ANIS
1X31
HIATHA
0/1
NYOMLIN
8287 i(

i

¥IATNG
gzgy-/] ¥1 1

91/ZT NI
19Y40LS SSYH
HO¥4 ONV OL

AVA!

(HSH) Y3OVNYA SIDIAYIS VIQIM

YIOYNYH

INAS

(IdV HSH)

JOVAYILINT ONINHYYOOUd NOILYDITddY YIOVNVH SIDIAMIS VIQIN

JUNLIALTHOYY FYVYMLIOS INTITD

NOILVIINddY IN3ITD

\-z081T

1087

H VIO

8081

1 £4°]!

‘8T "9I14d

18/28

PCT/US94/11277

WO 95/10910

()4344nguays1bay
I

()13 |dwojeieqaln
S

dSH NIS

dSH 304N0S
\-g061 \—906T
“ | »
| ()4a3ngo|akoay |
i b L) 2
| ()eregariip | ()e1egeA129Y
1 " y
MIOVNVH SIDIAYIS VIO
-t 061
)
“
9 ()4344ngpuag
()233duwojpuas | 3
"
| Y
¥IATYO 0/1
YUOMLIN
/(Nsmﬁ

MOTd VLIVA WALSASANS HIAHAS °61 °"9Id

19/28

PCT/US94/11277

WO 95/10910

()d944nguaysibay

|

dSH ANIS

\-8002

()13]duojeieqay 1y
3

[
[
[
[
[
[
I
[
|

Y

4

b
()eteqaytap

YIOVNYH SIDIAYIS VIQIN N
()4944ng3soq : v00e
2 “
9| ()4244ngan1a03y
()4344ngysoq | £
“
Y Y
¥IATNO O/1
> MYOMLIN
./(Nssm

MOTd VLVA WALSASANS INJITO "0Z2 "91d

20/28

WO 95/10910

FIG. 21.
210 2_ NETWORK
" INPUT/OUTPUT
LIBRARY
2104~ DLM API
2106_ DATA LINK
MANAGER (DLM)
2108‘_ MDM API
2110 4 MEDIA
DEPENDENT.
MODULE (MDM)

PCT/US94/11277

NETWORK INPUT/OUTPUT DRIVER

I

TO AND FROM
NETWORK
INTERFACE

21/28

LINK
k::'l‘ PACKET
MANAGER (LPM)
2112 2114

2100

WO 95/10910

FIG.

2

DLM_BeginSession
DLM_EndSession

22.

202

SESSION

PCT/US94/11277

DATA LINK MANAGER (DLM)

2106

2110

A

MANAGER

2206

22

04

1 2

ADDRESS {

MANAGER J‘

DLN_RegisterSocket
DLM_UnRegisterSocket

2208
DLM_dgSend

2212\
DLM Send Complete
Cal tback

2216
DLM_dgPostBuffer

2218

DLM Message
Receive Callback

PORT/SOCKET
MANAGER

MESSAGE OUTPUT

A

SEND QUEUE(S)

MANAGER

SEND COMPLETE

ASYNCHRONOUS

4

HANDLER

FRAGMENTER
4

RECEIVE QUEUE(S)

RECEIVE BUFFER
MANAGER

MESSAGE

2214

i

| ASYNCHRONOUS

RECEIVER

DE-FRAGMENTER

22/28

MEDIA
DEPENDENT

MODULE

(MDM)

WO 95/10910

PCT/US94/11277

FIG. 23. MEDIA DEPENDENT MODULE (MDM)
2110
2302
MDM_BeginSession SESSION
MDM_EndSession MANAGER
2304\
MDM_Register ADDRESS
MDM_UnRegister MANAGER et »
/Y
2306W y
MDM_dgSend LINK PACKET SEND QuEUE
OUTPUT MANAGER NETHORK
—— INTERFACE
EVENT CONTROL
BLOCK MANAGER
231 2\ - SEND PROCESS
CONTRO! -==h
MDM_dgClearToSend FLO:ANAGER : HANAGER
T
MO Messa LINK PACKET RECEIVE PROCESS
o ressage RECEIVER MANAGER & --=-=-=------- »
Receive Callback
N ——
SEND COMPLETE
MDM Send Complete HANDLER == === m e e e cccccmccm——————-
Cal Iback
N/
N—

23/28

WO 95/10910

LEVEL 1

LEVEL 2

LEVEL 3

LEVEL 4

LEVEL 5

FIG. 24.

AUDIO MSP| | VIDEO MSP| | TEXT MSP

MEDIA SERVICES MANAGER (MSM)

DATA LINK MANAGER (DLM)

MEDIA DEPENDENT MODULE (MDM)

NETWORK INTERFACE

TO & FROM
NETWORK

24/28

PCT/US94/11277

WO 95/10910 PCT/US94/11277

FIG. 25. LEVEL 1 AUDIO PACKET

2 BYTES 2048 BYTES

TIME STAMP AUDIO DATA

G{fa

FIG. 26. LEVEL 1 VIDEO PACKET

28 BYTES 4 BYTES UP TO 18 KBYTES
VIDEO FOR
WINDOKS HEADER RESERVED YIDEO DATA

FIG. 27. LEVEL 1 TEXT PACKET

201 BYTES

TEXT DATA

25/28

WO 95/10910 PCT/US94/11277

FIG. 28. LEVEL 3 (LINK) PACKET

24 BYTES UP TO 1476 BYTES

DLM HEADER DLM DATA

FIG. 29. LEVEL 3 (LINK) PACKET HEADER

1 1 2 2 2
6 BYTES | BYTE| 6 BYTES | BYTE| 4 BYTES | BYTES | BYTES | BYTES

DESTINATION | DEST| SOURCE | SRC | MESSAGE | OFFSET| SIZE | TOTAL
ADDRESS | PORT| ADDRESS | PORT | NUMBER SIZE

FIG. 30. LEVEL 5 (NETWORK) PACKET

6 BYTES 6 BYTES | 2 BYTES UP TO 1500 BYTES

DESTINATION] SOURCE PACKET

ADDRESS | ADDRESS | TYPE LINK PACKET

26/28

PCT/US94/11277

WO 95/10910

AYON3N

0T1gE

Z11¢€

N

VIIE

SI0IAYIS
3avo1

SINIOd AYLN3

(3109) 118vLNDIN3

430v01
JINYNAQ W

9TT1¢g

SINIOd AYING

y

(109) ¥iavol

4019

SIIMIS
SHOONIM

SINIOd AYLINI GNV
SITHVHATT 404 S1SINDIY

¢

801¢€

OO TE SHOONIM L4OSO¥IIN

—— . —————— ——————— ¢

AW4HDS JT109/7109

SINIOd AYIN3

JIKVNAQ v8079

SINIOd AYINI QNY
SITHVYAIT 404 S1SIN0Y

3109

4315303
SINIOd AYINI QNV ERJTREN
SITHVYEIT HO4 SISIN0OY

¢01¢E

I

FOTE NOILYIITddY LSYIILINK

1€ 914

27/28

WO 95/10910

TIME

TIME 1

TIME 2

TIME 3

TIME 4

TIME X

FIG. 32

LIBRARY A

INITIALIZE LIBRARY A
LOAD LIBRARY B
CALL TO INITIALIZE LIBRARY B

PCT/US94/11277

LIBRARY B

RETURN

—» INITIALIZE LIBRARY B

F' 3

RETURN TO USER

&
<

START CLOSING LIBRARY A
CALL TO CLOSE LIBRARY B

_» START CLOSING LIBRARY B

SYNCHRONOUS RETURN THAT
CLOSING OF LIBRARY B IS STARTED

SYNCHRONOUS RETURN TO

USER THAT CLOSING OF
LIBRARY A IS STARTED

<

ASYNCHRONOUS NOTIFICATION THAT
CLOSE OF LIBRARY B IS COMPLETE

CLOSE COMPLETE INTERRUPT

<&
<

ASYNCHRONOUS NOTIFICATION
TO USER THAT CLOSING OF
LIBRARY A IS COMPLETE

<

RETURN FROM USER

[
»

RETURN FROM ASYNCHRONOUS NOTIFICATION

v

28/28

-~

PCT WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6 : ‘ (11) International Publication Number: WO 95/10910
HO4L 2 A3

04L. 29/06 (43) International Publication Date: 20 April 1995 (20.04.95)

(21) International Application Number: PCT/US94/11277 | (81) Designated States: CA, JP, VN, European patent (AT, BE,
CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT,

(22) International Filing Date: 6 October 1994 (06.10.94) SE).
(30) Priority Data: Published

08/134,025 12 October 1993 (12.10.93) US With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of

(71) Applicant: INTEL CORPORATION [US/US]; 2200 Mission amendments.
College Boulevard, P.0. Box 58119, Santa Clara, CA
95052-8110 (US). (88) Date of publication of the international search report:

11 May 1995 (11.05.95)

(72) Inventors: SAMPAT, Ketan; 8865 SW White Pine Lane, Port-
land, OR 97225 (US). ACOTT, Troy; 16604 SW Tim-
berland Drive, Beaverton, OR 97007 (US). DANNEELS,
Gunner; 4840 SW 166th Drive, Beaverton, OR 97007
(US). SIVAKUMAR, Ramamurthy; 3770 NW 166th Drive,
Beaverton, OR 97006-5212 (US). SPOONER, Galen; 4970
SW Menlo Drive, Beaverton, OR 97005 (US).

(74) Agent: MURRAY, William, H.; 1600 Market Street, Suite
3600, Philadelphia, PA 19103 (US).

(54) Title: SERVER/CLIENT ARCHITECTURE AND METHOD FOR MULTICASTING ON A COMPUTER NETWORK

SERVER SOFTWARE ARCHITECTURE

1512
1602 SERVER APPLICATION ‘ 10 AN FRON
MASS STORAGE
l 0EVICE 1516
1624 1604\1 WEDIA SERYICES MANAGER APPLICATION PROGRAMMING INTERFACE 1626
(e 1 FILE 10
1608 [ORIVER
EDIA S
ni:; . I MEDIA SERVICES MAAGER (HS) ‘)1628
.f[REAL-TIME WEDLA SERVICES APPLICATION PROGRAMMING INTERSACE (RIS API) | "EE:“
o 1T T T 1
VIDEO VIDEQ MpIO D10 TEXT TEXT l
SOURCE SINK SURCE Sin SOURCE SINK 10
[P =P [wp usP KETWORK
1612 INTERFACE
I el ! r
1614 1616 1618 1620 1622
FROK 10 FROM ™ FRON 10
viceo CiSPLAY aplo MRI0 T OISPLAY
200EC ORIVER MIVER CRIVER SQURLE ORIVER
1506 1510

(57) Abstract

A server/client for a network-based muilticast system has a media services manager (1604) and one or more media
service providers (1612, 1614, 1616, 1620, 1622). When functioning as a server, the media service providers receive data
corresponding to a channel having one or more related data streams, where each media service provider receives data
corresponding to a data stream of the channel. In the server, the media service manager receives the data from the media
service providers and transmits the data to the network. When functioning as a client, the media services manager receives
data from the network for a selected channel having one or more related data streams. ln the client, the media service
providers receive and play the data from the media services manager, where each media service provider receives and plays
data corresponding to a daia stream of the channel. In a preferred embodiment, a channel has logically related audio, video,
and/or text data streams.

applications under the PCT.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the bPCT on the front pages of pamphlets publishing international

Austria
Australia
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus
Canada

Central African Republic
Congo
Switzerland
Céte d’Ivoire
Cameroon
China
Czechoslovakia
Czech Republic
Germany
Denmark
Spain

Finland

France

Gabon

GB
GE
GN
GR
HU
IE

Ir

JP

KE
KG
KP

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Ttaly

Japan

Kenya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Senegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uzbekistan

Viet Nam

|
INTERNATIONAL SEARCH REPORT

Interna il Application No

PCT/US 94/11277

A. CLASSIFICATION OF SUBJECT MATTER
IPC 6 HO4L29/06

J

¢ According to Internatonal Patent Classification (IPC) or to both natonal classification and IPC
3 B. FIELDS SEARCHED

v Minimum documentation searched (classification system followed by classificaton symbols)

IPC 6 HO4L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X NACHRICHTEN TECHNIK ELEKTRONIK, 1,19
vol.42, no.2, March 1992, BERLIN DD
pages 56 - 58, XP288316
M.VAKALOPOULU 'MULTIMEDIA-ENDGERATE'
see the whole document
Y : 2-4,
10-13,
20,21,
25-27
- /.._
m Further documents are listed in the continuation of box C. m Patent family members are listed in annex.

° Special categories of cited documents : J— . i . X
T" later document published after the international filing date

or priority date and not in conflict with the application but

"A" document defining the general state of the art which is not ; e :
considered to be of particular relevance ;tvcg‘ ttx% r\lxm:lc:rstand the principle or theory underlying the
E e‘z_lnlr_her:a(;cument but published on or after the international “X" document of particular relevance; the claimed invention
ing date _ cannot be considered novel or cannot be considered to
L’ doglp!;le_nt Wh:fh may m»;’h doubﬁ on pno‘:ity cltglm(s&lor involve an inventive step when the document is taken alone
which is cited to establish the publicaton date of another “Y* document of i . i i i
reue - ! particular relevance; the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the
“O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-
other means ments, such combination being obvious to a person skilled
“P" document published prior to the international filing date but in the art.
later than the priority date claimed “&" document member of the same patent family
1 Date of the actual completion of the international search Date of mailing of the international search report

730495
3 April 1995

Name and mailing address of the ISA Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+ 31-70) 340-3016 Canosa Areste, C

Form PCT/ISA/210 (second sheet) (July 1992)

page 1 of 2
SRS

INTERNATIONAL SEARCH REPORT

Intern: al Application No

PCT/US 94/11277

C(Continuattion) DOCUMENTS CONSIDERED TO BE RELEVANT |

Category °

Citanon of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y

IEEE NETWORK: THE MAGAZINE OF COMPUTER
COMMUNICATIONS.,

vol.4, no.6, November 1990, NEW YORK US
pages 32 - 49, XP172741

T.D.C.LITTLE ET AL 'NETWORK CONSIDERATIONS
FOR DISTRIBUTED MULTIMEDIA OBJECT
COMPOSITION AND COMMUNICATION'

see page 39, right column, line 1 - page
40, right column, line 10

see figures 1,10

EP,A,0 529 864 (SUN MICROSYSTEMS, INC.) 3
March 1993

see page 4, line 53 - page 5, line 36

see page 7/, line 30 - line 55

see figures 2,8

COMPUTER,

vol.24, no.10, October 1991, LONG BEACH US
pages 9 - 21, XP266111

E.A.FOX 'ADVANCES IN INTERACTIVE DIGITAL
MULTIMEDIA SYSTEMS'

see page 17, left column, line 29 - page
19, left column, line 15

see figure 3

2-4,
10-13,
20,21,
25-27

1-30

1-30

Form PCT/ISA/210 (continuation of second sheet) {July 1992)

page 2 of 2

L ___
INTERNATIONAL SEARCH REPORT

iutformation on patent family members

Intern: al Application No

PCT/US 94/11277

Patent document Publication Patent family Publication
cited in search report date member(s) date
EP-A-0529864 03-03-93 JP-A- 6236330 23-08-94

e~

Form PCT/ISA/210 (patent family annex) (July 1992)

	2009-04-17 Foreign Reference

